

Lesson Details	Lesson Study Group
Name of lesson: Looks Different, Same	School Name & address: Rockwell
Value	College, Cashel, Co. Tipperary
Topic: Algebraic Fractions	Advisor: Enda Donnelly
Year group: 2nd year	Teachers: Henry Flynn, James Keating,
Level: Higher	Paul Maguire and Sean Ryan

Research Theme

Wellbeing and student engagement is the school's SSE topic. We would like our maths students to have a productive disposition—habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence, perseverance and one's own efficacy.

Equivalence in fractions is the maths topic.

Background & Rationale

The group's experience is that students sometimes rely too much on procedure rather than understanding in this area. This leads to recurring problems right through post-primary Maths. A greater understanding of the basics of fractions along with a consistency of approach across related topics would help students understand how to work with fractions in other applications. The mathematical language can be an issue for students.

Relationship of the Unit to the Syllabus		
Prior Learning	Current Learning	Future Learning
Multiples, LCM	N.1 b. perform the operations of	Equations with algebraic
Fractions	addition, subtraction, multiplication	fractions

	and division and understand the	Complex Numbers
	relationship between these	Irrational numbers
	operations and the properties:	Limits and calculus
	commutative, associative and	
	distributive in $\mathbb N,\mathbb Z,$ and $\mathbb Q$ and in	AF.3 apply the properties
	$\mathbb{R}\$, including operating on surds	of arithmetic operations
		and factorisation to
	Adding and subtracting algebraic	generate equivalent
	fractions with a numerical	expressions so that they
	denominator	can develop and use
		appropriate strategies to:
		a. add, subtract and
		simplify III. expressions of
		the form a , where a, b, c
		€Z
		c. divide quadratic and
		cubic expressions by
		linear expressions, where
		all coefficients are
		integers and there is no
		remainder

Goals of the Unit

To develop a deeper understanding of equivalence and of fractions.

Unit Plan	
Lesson	Brief overview of lessons in the unit
1	Multiplying numeric fractions
2	Multiples, LCM
3	Changing appearance of fractions (equivalence)
4	Adding and subtracting numeric fractions

5 research Adding and subtracting algebraic fractions (numerical denominator) lesson

3 and 4 might happen in one lesson

Goals of the Lesson

Students will be able to:

Express algebraic fractions in equivalent forms

Add and subtract algebraic fractions (numeric denominator)

Flow of the Lesson		
Timing, activities, steps,	Teacher support,	Assessment, questions,
resources, problems	activity	comments, strategies
40 min lesson		
Introduction:		
Key words: Equivalent		
Equal value		
Students will be asked to	How can we get a	Is the denominator the
express the answer in its	common denominator?	same for both fractions?
simplest form each time		Teacher works through
		and explains.
1. On the board:		Teacher will work through
x/2 + x/4 =	If students use a	what happens if you work
(~2 mins student	denominator other than	with a different
work,~ 5 mins	the LCM	denominator e.g. 8
board work)		
2. On the board:		
x/3 + x/5 =		
(~3 mins student		
work,~ 3 mins		

	board work)		
3.	2x/3 - x/7		
	(~3 mins student		
	work,~ 4 mins		
	board work)		
4.	2x/9 + (x+1)/6	Check students are	
	(~3 mins student	handling 3(x+1) correctly	
	work,~ 4 mins		
	board work)		
	If they could do		
	with another Q of a		
	similar level:		
	3x/5 + (x+2)/4		
	If there was time		
	left in the lesson		
5.	2x/9 + (x-1)/6		
Homework: Pg 481, 482			
Q 5,7	,9,14,15		
•	3x/4 + 5x/2		
•	x/4 - x/6		
•	/x/5 - x/2		
•	(2x-1)/6 + (x-3)/4		
•	(5x-1)/4 - (2x-4)/5		

Board Plan

Neat boardwork left on board as lesson develops

Evaluation of Lesson

The research lesson was a great opportunity to see things from the student perspective and look closely at how students' learning progresses through a lesson. We also got to identify where and when difficulties can arise in this topic. We observed that a significant number of students made transposition errors when dealing with fractions with a numerator of more than a single variable, so this will need further attention in class.

The mathematical language needed here can be an issue for students. We want our Maths department to be consistent in the language we use and the methods we promote as effective in working with fractions. We observed that students generally transferred their knowledge from numerical fractions very well and handled the earlier questions impressively. Students showed very good use of mathematical language "equivalent", "algebraic", "multiplication is commutative"...

Summary of Key Learning	
Meeting 1	Discussed the issues for teaching and learning around equivalence
	- language, misconceptions, reliance on procedures (cross
	multiplying!), issues from primary school
	Discussed the many places this comes into the Maths curriculum
	Looked at examples (e.g. $x/2 + (x-1)/3$), considered different
	approaches, key points, role of equivalence, appropriate language
	and explanations of the teacher. Began to map out a unit of
	approximately 5 x 40 min lessons for second years
Meeting 2	Looked at JCT learning outcomes poster:
	https://www.jct.ie/perch/resources/maths/learning-outcomes-poster-
	pdf.pdf and links to the unit
	Jimmy's 6/11 probability puzzle and other applications in probability
	Might work on this earlier in 2nd year from next year?

	Might move CBAs earlier (into mid/late Feb) to teach unit in late
	March - provisional research lesson date of Tue 28th March
	Lesson 3 or 4 for research lesson
	Provisional meeting 3 date: Thursday Feb 9th, 4pm
Meeting 3	Considered student agency and ownership
Meeting 4	Ran through lesson including homework. Possible student
	difficulties. Fine tuned questions. Considered timing of activities and
	s made a rough draft of an observation plan.
Meeting 5	

Final Reflection

We feel that getting involved in lesson study was a great opportunity for us to collaborate on a common and coherent approach to working with fractions. Being able to choose the area of Maths that we wanted to work on ourselves in Rockwell College made this form of CPD ideal for us.

During the last few months we have found ourselves chatting more regularly about teaching and learning of Maths. The support we received from school management during the lesson study cycle was much appreciated. We plan to present our work to our whole staff in the near future.

