Lesson Details	Lesson Study Group
Name of lesson: Missing in Action	School Name \& address: Tyndall
Topic: Algebra	College Carlow
Year group: First Years	Associate: Bernadette Flanagan
Level: Mixed Ability	Link Advisor: Enda Donnelly
	Teachers: Angela Keating, Deirdre
	Fitzgerald, Nicola Phelan, Paula
	Kennedy, Ann DeVries.

Research Theme

We want our students to (i) engage purposefully in meaningful learning opportunities and (ii) reflect on their progress as learners and develop a sense of ownership of and responsibility for their learning (Looking at Our School 2022 - A Quality Framework For Post-Primary Schools p.25). Our engagement in the Lesson Study process demonstrates our ability to (i) select and use teaching approaches appropriate to the learning intentions and to student's learning needs on a daily basis and (ii) value and engage in professional learning and professional collaboration (Looking at Our School 2022 - A Quality Framework For Post-Primary Schools p.25) in pursuit of such standards.

Background \& Rationale

This lesson is aimed at First Year students. The lesson seeks to address the common misunderstandings, misinterpretations and misconceptions often encountered by students when writing mathematical equations from given word problems. Building on their work in the Number strand students will generalize their observations, expressing, interpreting and justifying general mathematical statements in words and in symbolic notation. They will use the idea of equality to form and interpret equations and the syntactic rules of algebra to transform expressions and solve equations. Emphasis will be placed on helping students to get used to describing, explaining and justifying their method for doing this.

Relationship of the Unit to the Syllabus		
Prior Learning	Current Learning	Future Learning
Number Strand: In particular, students will have an understanding of the different aspects of Number including different representations of numbers and the connections between them, as well as the properties and relationships of binary operations.	Building on their work in the Number Strand, students will generalise their observations, expressing, interpreting, and justifying general mathematical statements in words and in symbolic notation. They will use the idea of equality to form and interpret equations, and the syntactic rules of algebra to transform expressions and solve equations.	Students will explore and analyse the relationships between tables, diagrams, graphs, words, and algebraic expressions as representations of functions.

Goals of the Unit

This unit is intended to help students to:

AF.2: investigate situations in which letters stand for quantities that are variable so that they can:
a. Generate and interpret expressions in which letters stand for numbers
b. Find the value of expressions given the value of the variables.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Knowledge } & \begin{array}{c}\text { Students should know: } \\
\text { 1. How to represent unknown numbers using symbols or } \\
\text { letters }\end{array}
$$

2. That when an expression contains more than one

operation, we follow BIRDMAS\end{array}\right\}\)| Students should be able to: |
| :--- |
| Sills Find the value of an expression by substituting in given |
| numbers for letters |

	2. Translate an expression into an English statement and vice versa.
Understanding	Students should understand: 1. The meaning of the words: variable, term, expression, like/unlike terms, constant and coefficient.
Value	Students should appreciate: 1. The use of letters in formulae they would have come across, such as area, volume etc.

c. Use the concept of equality to generate and interpret equations.

AF.4: Students should be able to select and use suitable strategies (Graphic, numeric, algebraic, trial and improvement, working backwards) for finding solutions to:
a. Linear equations in one variable with coefficients in Q and solutions in Z.

Knowledge	Students should know: 1. The mathematical meaning of English words that appear in problems.
Skills	Students should be able to: 1. Use the balancing method to solve an equation 2. Translate an equation into a word problem and vice versa.
Understanding	Students should understand: 1. That they need to use the skills they learnt in other areas of algebra in order to simplify and solve linear equations.
Value	Students should appreciate: 1. That being able to solve an equation is a fundamental mathematical skill that will be used in all other strands.

Unit Pla	
Lesson	Brief overview of lessons in the unit
1	Students will investigate situations in which letters stand for quantities that are variable so that they can: a. Generate and interpret expressions in which letters stand for numbers
2	a. Find the value of expressions given the value of the variables. b. Introduction/use of the syntactic rules of algebra
Live Lesson	a. Use the concept of equality to generate and interpret equations. b. apply the properties of arithmetic operations to generate equivalent expressions so that they can select and use suitable strategies (numeric, algebraic) for finding solutions to: i. Linear equations in one variable with coefficients in Q and solutions in Z.
4	a. apply the properties of arithmetic operations to generate equivalent expressions so that they can develop and use appropriate strategies to: 1. add, subtract and simplify i. linear expressions in one or more variable with coefficients in Q
5	ii. quadratic expressions in one variable with coefficients in Z
6	Multiply expressions of the form a. $a(b x+c y+d)$ where $a, b, c, d € Z$
7	b. $(a x+b)(c x+d)$ where $a, b, c, d \in Z$
8	Divide quadratic expressions by linear expressions, where all coefficients are integers and there is no remainder

Goals of the Lesson

This lesson is intended to help students to:

1. Build on their work in the Number strand.
2. Generalize their observations, expressing, interpreting and justifying general mathematical statements in words and in symbolic notation.
3. Use the idea of equality to form and interpret equations.
4. Use the syntactic rules of algebra to transform expressions and solve equations.
5. Describe, explain and justify their method for doing this.
6. Investigate situations in which letters stand for quantities that are variable so that they can:
a. generate and interpret expressions in which letters stand for numbers
b. find the value of expressions given the value of the variables
c. use the concept of equality to generate and interpret equation (AF. 2)

Select and use suitable strategies (graphic, numeric, algebraic, trial and improvement, working backwards) for finding solutions to:
a. linear equations in one variable with coefficients in \mathbb{Q} and solutions in \mathbb{Z} or in $\mathbb{Q}(A F .4)$ (Junior Cycle Mathematics, 2017 pp.18-19)

Flow of the Lesson

Timing, activities, steps, resources, problems	Teacher support, activity	Assessment, questions, comments, strategies
Lesson 58 mins. At the beginning of the lesson students are given a handout containing all the tasks to be	At the beginning of the lesson students are given a handout containing all the tasks to be completed.	At the beginning of the lesson students are given a handout containing all the tasks to be
Task 1 (a)	Teacher talks the students through all the tasks to be	
Find the missing number		
to make the following	completed. As each task is completed and equations true	following observation Task 1 (b)
sick a question from 1-10	display their work on the	

Explain the method you used to find the missing number to make the equation true.
Task 2 (a)
Using the variable n to represent the unknown number translate an English statement into an expression in maths

Task 2 (b)
Pick a question from a-h
Explain the method you used to find the missing number to make the equation true.
Task 3 (a)
Write an equation for each of the following English statements (Use the variable z to represent the unknown number Task 3 (b)
Pick a question from 1-5
Explain the method you used to find the missing number to make the equation true.
Task 4
Matching Exercise Match the English statement with the
board and to explain their method used in arriving at their solution.

2. Ithink of a number. I subtract 7 . The
3. I Etink of a number. I double it. The
4. Ithink of a number, I double it and
s. $\begin{aligned} & \text { Thlink of fan number } 1 \text { troble it and } \\ & \text { subtract } \mathrm{E} \text {. The result io } 15 \text {. }\end{aligned}$
-
Peh a auestion from 1.5 sabove.

names Prek one quesston trom an above.
\qquad
number is number and call it \boldsymbol{n}. What a. 2 bigge
b. 3 leas than n n d. Twleen
f. Haw of n n
h. 2 greater than ewlice n ?

Board Plan

Evaluation of Lesson

On balance, we concluded that the Lesson Study process appeared to be beneficial to student outcomes. Consideration of the students' reflection on the
lesson further strengthened our conclusion. Students noted that they felt more confident in their ability to write and solve equations. In addition, students pointed to feeling included in the class and having their opinion heard and taken into account. Students also commented on the pace of the lesson, with some pointing out that it was fast but manageable. Notably, all students expressed satisfaction following engagement in the matching exercise where they sought to match word problems with the relevant mathematical expressions and equations.
Overall, we felt it was a very busy lesson. Students were occupied for the entire lesson and the momentum to keep moving forward was maintained throughout the lesson. Although students did complete the matching exercise within the time allocated they did nonetheless express their desire to spend more time doing this type of exercise in the future.

Final Reflection

During the reflection stage we sought to reflect how each activity elicited the sought after change as detailed in the goals of the lesson above. On balance, we concluded that the Lesson Study process appeared to be beneficial to student outcomes. Consideration of the students' reflection on the lesson further strengthened our conclusion. Students noted that they felt more confident in their ability to write and solve equations. In addition, students pointed to feeling included in the class and having their opinion heard and taken into account. Students also commented on the pace of the lesson, with some pointing out that it was fast but manageable. Notably, all students expressed satisfaction following engagement in the matching exercise where they sought to match word problems with the relevant mathematical expressions and equations.

Appendix - Maths Tasks
Write an equation to match each situation:

1. Ms Kennedy's class is selling sweets for a fundraiser. The class has a goal of raising $€ 450$ for selling c boxes of sweets. Each box of sweets costs $€ 3.75$.

Equation: \qquad

Explain your method for doing this.
2. Jack is building a playpen for his dog. The area of the playpen is 24 square meters. The length is 6 m and the width is w meters.

Equation: \qquad

Explain your method for doing this.
3. Molly has saved $€ 27.50$ of her pocket money. She bought her brother an ice-cream for $€ 2.50$ and has $€ d$ left.

Equation: \qquad

Explain your method for doing this.
4. CJ and Ben ran a total of 10 km . CJ ran 4 km and Ben ran m km .

Equation: \qquad

Explain your method for doing this.
5. Patrick received $€ 278.25$ in his pay check for working h hours this week. The rate per hour is $€ 13.25$.

Equation: \qquad

Explain your method for doing this.

Find the value of the variable in each situation:

1. $€ 3.75 \times c=€ 450$
2. $6 m=24$
3. $€ 27.50-€ 2.50=\mathrm{d}$
4. $\mathrm{mkm}+4 \mathrm{~km}=10 \mathrm{~km}$
5. €13.25 X h = €278.25

I think of a number and call it n . What number is
a. 2 bigger than n
b. 3 less than n \qquad
c. 14 more than n \qquad
d. Twice n \qquad
e. Five times n \qquad
f. Half of n \qquad
g. A quarter of n \qquad
h. 2 greater than twice n ? \qquad

Pick one question from a-h above.

Explain the method you used.

Write an equation for each of the following. Use the variable z to represent the unknown number:

1. I think of a number. I add 6 . The result is 12 .
2. I think of a number. I subtract 7 . The result is 10 .
3. I think of a number. I double it. The result is 14.
4. I think of a number. I double it and then add 5 . The result is 19 .
5. I think of a number. I treble it and subtract 6 . The result is 15 .
\qquad

Pick a question from 1-5 above.

Explain the method you used to find the equation.

Matching Activity

2	6	8	72	8	9
4	7	11	24	4	6
12	3	9	6	6	30
14	13	1	30	3	4
3	9	36	6	\div	\div
12	5	60	\div	6	6

$\mathrm{n}+2$	n-3	$n+14$	14-ロ=1	$3 \mathrm{x} \square=36$	$\square \times 5=60$
$2 n$	5n	$2 X n$	72 $\div \square=9$	므 $=6$	6x■-6=30
5Xn	$\underline{\square}$	$\underline{\square}$			
	4	2	30;3-व=6	2 bigger than n	3 less than n
$\mathrm{n} \div 4$	$\mathrm{n} \div 2$	$2 n+2$	14 more than n	Twicen	Five times n
-+6=8	4+ $\square=11$	--3=9	Half of n	A quarter of n	$\begin{gathered} 2 \text { greater } \\ \text { than twise } \mathrm{n} \end{gathered}$

