Lesson Study

Lesson Details	Lesson Study Group
Name of lesson: Simultaneous Shapes	School Name & address: Saint
Topic: Simultaneous Equations	Augustine's College, Dungarvan
Year group: 2nd year	Advisor: Enda Donnelly
Level: Common	Teachers: Rosaleen Curran, Tess
	Martin, Roisín Feeney, Fergal Walsh,
	Mags McGrath and Noreen Twohig

Research Theme

Simultaneous equations: Going from the concrete to the pictorial to the abstract.

Background & Rationale

As teachers we feel that simultaneous equations are a recurring problem, which starts in second year but continues into senior cycle. The disappointing standard of student answers for a question on this topic in a recent second year test confirms that this is a worthwhile topic. Students sometimes struggle to make the connection between word sentences, numerical tables, graphs and expressions.

Relationship of the Unit to the Syllabus		
Prior Learning	Current Learning	Future Learning
Solving linear equations	Coordinate geometry	3 variable simultaneous
Graphing linear functions	Linear patterns	equations
	Simultaneous equations	Linear and quadratic
		simultaneous equations
		(including coordinate
		geometry of the circle)

Lesson Study

Goals of the Unit

Students will develop a variety of strategies to solve simultaneous equations and understand the relationship between the equations and graphs

Unit Plan	
Lesson	Brief overview of lessons in the unit
1	Problem(s) using concrete manipulatives e.g. lego, coins
	Trial & improvement and elimination could be used by students
	Tables?
	Graphs? GeoGebra or Desmos
2	Sim equations with <u>pictures</u> /symbols
(Research	Students must explain their thinking
lesson)	▲ + ▲ + ▲ + □ = 25
	▲ + ▲ + □ = 18
	Going from pictures to algebra? 3T+S=25 and 2T+S=18
	Using a variety of techniques to solve
	Could students make up their own problems?
3	Solving abstract simultaneous equations algebraically
4	Solving abstract simultaneous equations algebraically including writing
	expressions and possibly linking back in with graphs
5	Putting it all together. Problem solving - JC level questions

Goals of the Lesson Students will be able to work with 2 variables and go from the concrete to the pictorial. Students will be able to solve for each variable using a variety of strategies including trial and improvement and elimination.

Flow of the Lesson		
Timing, activities,	Teacher support, activity	Assessment,
steps, resources,		questions, comments,
problems		strategies

PDDSTOR

Lesson Study

Can you solve it (one or	Allow ~5 mins student work	
2) algebraically?	and ~5 mins teacher led	
	discussion.	
Summary		
	Explain how we've moved	
If time allows (or	from concrete \rightarrow pictorial \rightarrow	
homework)	abstract	
Can students make their		
own problem and ask		
their partner to solve it?		
2 minutes intro	Explain that yesterday was	
	working with concrete	
	materials, today we're going	
	to develop this further by	
	using pictures.	
5 minutes pair work (first	Teacher observation.	Possibly showcase 2
question on sheet):	Prompt struggling students	methods for solving this
▲ + ▲ + ▲ + □ =25	to trial and improvement	on the board or on mini
▲ + ▲ +□=18		whiteboards
Find the value of a	Teacher observes and	
triangle and a square	highlights a correct	
	response/responses ~5mins	
5 minutes teacher-led	1. Trial and error	
class discussion.	2. Subtract one line from	
	the other	
	3. Use "algebra" -	How can we use
	3T + S = 25	"algebra" to replace the
	2T + S = 18 and solve	pictures?
	Highlight this good	
	work if observed	

	Use magnetic resources to	
	work through method 2 and	
	leave on the board.	
"Harder" Question (Q4)		
9 1 1 1 1 1 1 1 1 1 1		

Evaluation of Lesson

The student whiteboards worked well in "making learning visible". They helped the teacher quickly see how the students were progressing and allowed students work together and see how others were tackling the problems.

Some pairs communicated and worked very well together.

Further work is needed with some students to move them on from "trial and improvement" and the next few lessons planned in the unit will be needed to consolidate ideas from this lesson, to practice dealing with algebraic equations with variables and to strengthen the links with graphs.

Students were challenged to solve pictorial simultaneous equations. The equations got progressively more complex and required different techniques to solve them. The thought given to planning for the wide range of student abilities meant there was sufficient challenge for every student.

We would like to teach the lesson again to a different group with a few tweaks to improve student learning.

Summary of Key Learning	
Meeting 1	Simultaneous equations agreed as the topic.
Meeting 2	Briefly looked at a second year question asking students to find the
	point of intersection of
	The group would like to:
	 use concrete materials to make it less abstract(CPA)
	 help the students make links between the words, equations
	and graphs

	 help the students understand the mathematical language involved
	Fergal suggested the method of expressing both equations as y =
	and equating the expressions to solve for x could help
Meeting 3	Recapped previous meeting. Looked at JC syllabus docs and
	discussed goals of the unit. Worked on a unit plan of approx. 5
	lessons. Considering working with lesson 2 as the research lesson
Meeting 4	Recapped previous meeting. Defined goals for research lesson.
	Looked at activity for lesson 1 in the unit, then planned in detail
	lesson 2.
	Proposed Research Lesson Date 7th March
Meeting 5	Planned resources for the lesson. Detailed timing for the lesson.
	Considered how student ownership will be developed in the lesson.
	Discussed whether all maths teachers are using the
	scaffold/balancing method for solving equations.

Final Reflection

The collaborative lesson study meetings gave us an opportunity to discuss the methods we teach our students e.g. solving linear equations and the pros and cons of different methods.

We would be interested in collaborating on algebraic fractions or trigonometry in the future.

Lesson study made us think about how to get students to do more for themselves. The research lesson was a great chance to look closely at how the students are getting on.

Our discussions in lesson study meetings reminded us that we need to plan for more student-led (rather than teacher-led) lessons"

Lesson study works well for a group of Maths teachers but it could also be an effective way of other subject teachers collaborating on planning and could be part of our school SSE work.

Appendix - Some of the maths activities used.

Throughout, each question is separate, so for example a square can be different values in different questions.

Section A - find the value of each shape

^{d)}

Section C - find the value of each shape

° ★ ★ ★ = 9 + **□ □ □** = 7 + ★ b) $\bigwedge \bigwedge \bigwedge \bigstar \bigstar = 16$ $\bigwedge \bigstar \bigstar \bigstar \bigstar = 18$

- $\stackrel{\text{d}}{=} 4 \stackrel{\text{d}}{=} 5 \stackrel{\text{d}}{=} 2$