

Lesson Details	Lesson Study Group
Name of lesson: Top Dog Area	School Name & address:
Topic: Problem Solving (Algebra &	Coláiste Pobail Setanata, Phibblestown,
Applied Measure	Clonee, Dublin 15
Year group: 5 th Year	Associate: Mairéad O'Rourke
Level: Ordinary Level	Link Advisor: Marilyn O'Riordan
	Teachers: Liam Nielsen, Alan Gaul,
	Hannah Cassidy, Frances Shannon,
	Mairéad O'Rourke

Research Theme

This year our school is in a review year of SSE.

- Our requirements this year are to:
- Look at the impact of COVID-19 on the motivation and engagement of our students- relevant supports for all students including SEN and at-risk students.
- Consider what will be needed to initiate a wellbeing promotion review and development cycle by 2025.
- Take stock of the effectiveness of the SSE process in CP Setanta to date- is it collaborative, inclusive and impactful.

Lesson Study provides us with an opportunity to focus on these requirements as a department.

Background & Rationale

From discussing the 2015 chief examiners report and meetings of our own department, the maths teachers feel that students have difficulty with questions which required them to use their prior knowledge and multiple strands of the syllabus at once. We have redesigned our schemes to units of learning while planning for the new Junior Cycle. We believed this would provide opportunities for students to apply the skills and knowledge from one strand to another strand and

remove the aspect of our schemes which compartmentalised the strands into chapters rather than the continual flow that lies in the Maths curriculum. While compartmentalising knowledge may help keep it organised we have seen how it restricts the ability to cope with unfamiliar questions, particularly those requiring the synthesis of knowledge and skills from several strands.

Students should be encouraged to persevere in these types of question, if the initial attempt does not work, they should be prepared to try the question a different way. Based on our discussions and research findings we have chosen to base our unit and research lesson on creating a more productive approach in our teaching to help develop students problem solving skills and have students make links between abstract concepts like algebraic expressions to familiar everyday problems such as area and volume of shapes.

During our discussions we identified many problems our students face: 1. While students can often handle questions well when given at least some dimensions, we recognise that they regularly have difficulties thinking/working with variables particularly in the area of problem solving in geometry. 2. Problem solving tasks that require students to activate mathematical thinking processes. 3. Students often display difficulties in applying their knowledge and skills to solve problems in unfamiliar contexts.

Relationship of the Unit to the Syllabus		
Prior Learning	Learning Current Learning	
Familiar with	The general	Co ordinate
algebra, area and	problem solving	geometry the line:
volume of regular	skills acquired in	area of a triangle
and irregular	this unit can be	and area of shapes
shapes from	applied across all	constructed by
Primary school.	strands of the	points and lines.
Limited knowledge	syllabus at Senior	• Draw and interpret
due to COVID and	Cycle, and on to	scaled diagrams.
remote teaching.	further study of	Functions and
	Mathematics.	graphing functions.

Lesson olddy		
JC Strand:	Recognize the	Reading and
Number systems Use the	difference between	interpreting graphs
binary operations of N, Z,	2D and 3D. •	in functions.
Q and R/Q. Appreciate	Investigate the	
the Order of Operations.	nets of cubes,	
	cuboids and	
JC Strand: Applied	prisms. • Draw the	
Measure	nets given their	
MedSure	dimensions. •	
Model real world	Construct 3D	
situations and solve a	models from nets. •	
variety of problems	Calculate the	
involving surface areas,	surface area and	
and volumes of cylinders,	volume of cubes	
spheres, cones and	and cuboids.	
prisms.	Modelling	
	real-world	
Strand: Algebra:	situations and	
Factorising and solving	solving a variety of	
expressions/ equations.	problems	
	(including	
• Students will be	multi-step	
able to develop	problems) involving	
and re-enforce	surface areas, and	
their	volumes of	
problem-solving	cylinders and	
skills.	rectangular solids.	
• Students should be	Select and use	
able to: Apply their	suitable strategies	
knowledge and	to estimate the	
skills to solve	area of a	
problems in	combination of	

familiar and un	regular and	
familiar contexts.	irregular shapes.	
Students should		
be able to explain		
why the		
procedures they		
apply are		
mathematically		
appropriate.		
Students should be		
able to devise,		
select and use		
appropriate		
mathematical		
models, formulae		
or techniques to		
process		
information in a		
questions and		
draw relevant		
conclusion from it.		
Analyse a problem and		
break it down into		
manageable steps, reflect		
on their used.		
The general problem		
solving skills acquired in		
this unit can be applied		
across all strands of the		
syllabi at Junior Cycle.		

Goals of the Unit

- Solving real life problems
- Develop their problem solving skills
- Making links between abstract concepts, algebraic expressions to familiar area and volume shapes.
- Tackling problems using prior knowledge and using strategies already taught.

Unit Plan

Generalising and Solving Real World Problems

Algebraic expressions, equations, area and volume.

Algebra 1 (simplifying expressions), Algebra 2 (solving linear equations), Applied Measure

Students have been taught a lot from the algebra and trigonometry strand prior to beginning applied measure (area & volume). We hope students will draw on this knowledge and identify the connection when using shapes.

5 5		
Lesson	Brief overview of lessons in the unit	
1	Revise perimeter and area of regular shapes from the Junior Cycle	
	curriculum. (square, rectangle, circle, parallelogram)	
2	Revise area of a triangle, make links with trigonometry knowledge and	
	Pythagoras theorem.	
3	Calculate the area and perimeter of irregular shapes and trapeziums	
4	Recap on circles. Learn how to calculate the area of a sector and	
	length of an arc. Make links to everyday life and be able to explain	
	their differences	
5	Research Lesson: deduce different shapes from a word problem	
	using different area and perimeter formulas. Make reference to	
	trigonometry and generalisation using algebraic notation.	
6	Calculate cross sectional areas of shapes and calculating volume	
	using a third dimension.	

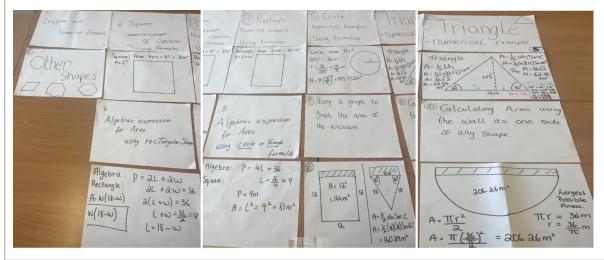
Goals of the Lesson

Students will be able to write more than 3 possible solutions to the task.

Students will be able to draw on prior knowledge of area and perimeter of shapes when answering the questions.

Students will learn that when calculating area of enclosures that it's not just rectangular that other shapes can give larger areas.

Students will be able to use images to explain their workings.


Flow of the Lesson		
Timing, activities, steps,	Teacher support,	Assessment, questions,
resources, problems	activity	comments, strategies
Introduction (5 mins)	Mind map over learning to	Assess knowledge on
Quick recap over learning	date on shapes.	topic so far.
to date.		
	Teacher writes all notes	
Pose the problem task.	on one note for students.	
Students work individually		
for 15 minutes.		
Students can then work in	Introduce and had out	Students using their
groups at their table to	problem task. Walk	problem solving skills to
discuss and see if anyone	around groups observing	answer the questions in
beside them came up with	their answers and	as many ways as
a different solution 5-10	approach to the question.	possible. Observe student
minutes. Discussion		work.
solutions and how they		
are valid.		
Ceardaíocht of student	Ask students to present	
responses 20-25 mins:	their solutions to the class	Assessment of student
Rectangle, square, circle	in an ordered fashion and	work and they will be
triangle, using the wall as	explaining reasons for	asked to justify their work
	choosing that way.	to the class.

a fourth side so only 3		
needed for fencing.		
Other solutions hexagon,		
triangle against the wall		
So only 2 sides of fence		
needed etc.		
Plenary (8 mins)	Recap over learning and	AFL: 2 stars and a
Recap over learning	objectives for students in	wish/exit slips to see
today. 2 stars 1 wish	today's class by asking	where student learning is.
Were the objectives	questions.	Students scale their
achieved and give		learning of today using
homework questions.	Have students write 2	traffic lights in their
	stars and a wish on their	journals.
	exit slips and scale	
	learning for today.	

Board Plan

Problem Task Question: Student Council want you to design a play area for our new therapy dog in the school garden. 36 meters of fencing was bought, and they want you to make the biggest play area possible. What are your options and which side lengths should they choose for the play area?

Evaluation of Lesson

Students achieved the goal of the lesson in attempting at least three possible solutions.

It was interesting to see that many students thought that the area needed to be 36, and not the perimeter.

We were very surprised that a lot of students tried to use compound shapes. Students successfully made links from their trigonometry knowledge to calculate the area of a triangle using the area formula.

As we had expected very few students made links with their algebraic knowledge in writing.

As expected all students used diagrams to explain their workings.

All students used the formulas they were familiar with using when answering the task. Students used their formula page to help them.

Summary of Key Learning	
Meeting 1	Teacher student time in class to teach the skills we would like is a
	problem. Would like to have more time to explore concepts through
	problem solving. Hopefully with the skills we will teach and help
	students develop will encourage them to use their skills and answer
	more problem solving questions.
Meeting 2	Review schemes of work to facilitate how we will teach the unit plan.
	Regarding time in class as it won't change we hope with recalling
	prior knowledge and creating as many opportunities for problem
	solving it will encourage students to attempt more problems.
	Over the past number of years we have noticed less students are
	trying more challenging problems. We would like to identify why this
	is happening? COVID?, interest?, knowledge?, confidence? Past
	experiences in Maths?
Meeting 3	During our meeting we changed group from a junior cycle class to a
	senior cycle class. We concluded that the skills we wished for our
	junior students to develop also apply to our senior cycle students.
	This group of students struggle with abstract concepts and algebra
	so we hope this approach will help them realise that what they view

Looson olday	
	as abstract can be applied to familiar shapes and give them more confidence in their mathematical ability.
Meeting 4	When writing up possible solutions to our problem task it was interesting to see how drawing on knowledge from algebra and trigonometry will help students come up with more potential solutions. First time we have taught trigonometry with this unit so will keep it as part of our plans moving forward as students can make links to calculating area of triangles in more than one way.
Meeting 5	We have been enjoying having professional and meaningful mathematical conversations which we wouldn't usually get time for. Developing a bank of problem solving styled questions suited to our unit of learning have also helped us develop suitable resources for students in class.

Final Reflection

One of the many benefits of lesson study is getting to work with colleagues during school based CPD. In a busy school, time is always an issue. However, lesson study gave us the opportunity to use our CPD to have conversations about our students' misconceptions in Maths and their problems with particular topics. Lesson study also provided us with the platform to work together to design and create questions and tasks specifically to challenge our students in the areas we feel they need most support.