WS08.02 Informal Introduction to Limits and Continuity of Functions

Student Activity: Concept of a Limit

Aim: To investigate the trends in the values of different functions as x approaches x_0

Given: f(x)=x+3, $g(x)=\frac{x^2-9}{x-3}$ and $h(x)=\frac{1}{x-3}$.

1. Fill in the following table:

х	2.9	2.99	2.999	2.9999	3	3.0
f(x) = x + 3						
$g(x) = \frac{x^2 - 9}{x - 3}$						
$h(x) = \frac{1}{x - 3}$						

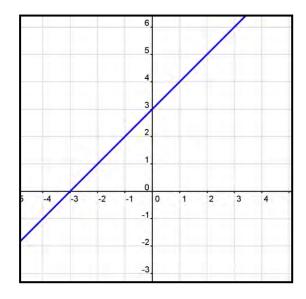
3.0001	3.001	3.01	3.1

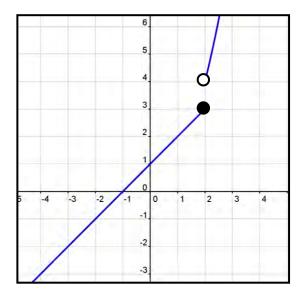
2. When *x* approaches 3 (but $x \ne 3$) does the value of each of the following functions approach a fixed value?

If so, find that value.

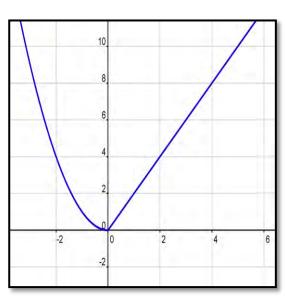
If not, can you describe what you think is happening?

(i) f(x) = x + 3


(ii) $g(x) = \frac{x^2 - 9}{x - 3}$

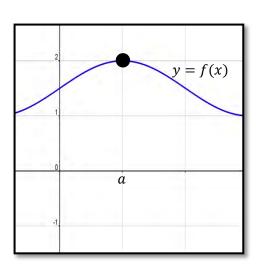

(iii) $h(x) = \frac{1}{x-3}$

Analyse each graph below and determine whether the function it represents is continuous: If not state why the function is discontinuous.

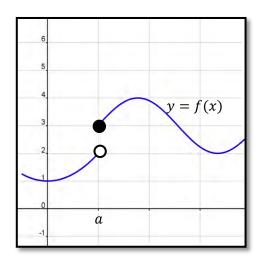

(i)
$$f: x \mapsto x+3$$

(ii)
$$y = \begin{cases} x+1, & \text{if } x \le 2 \\ x^2, & \text{if } x > 2 \end{cases}$$

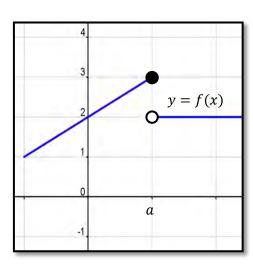
(iii)
$$g(x) = \begin{cases} x^2, & \text{if } x < 0 \\ 2x, & \text{if } x \ge 0 \end{cases}$$

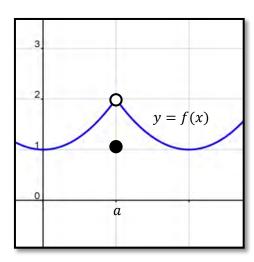


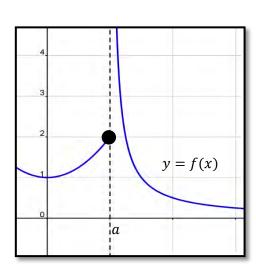
According to each of the following graphs of functions f(x):


(i) Determine whether f(x) is continuous at x = a.

- (i) (ii) Find $\lim_{x\to a} f(x)$.


(a)


(b)


(c)

(d)

(e)

(f)

Solutions to (a) to (f) above:

(a)	(i)	Yes continuous at a	(ii)	Limit is 2
(b)	(i)	No not continuous at a	(ii)	Limit does not exist
(c)	(i)	No not continuous at a	(ii)	Limit does not exist
(d)	(i)	No not continuous at a	(ii)	Limit is 2
(e)	(i)	No not continuous at a	(ii)	Limit does not exist
(f)	(i)	No not continuous at a	(ii)	Limit does not exist