Teaching & Learning Plans ## **Applications of Geometric Sequences and Series** Junior Certificate Syllabus Leaving Certificate Syllabus ## The Teaching & Learning Plans are structured as follows: **Aims** outline what the lesson, or series of lessons, hopes to achieve. **Prior Knowledge** points to relevant knowledge students may already have and also to knowledge which may be necessary in order to support them in accessing this new topic. **Learning Outcomes** outline what a student will be able to do, know and understand having completed the topic. **Relationship to Syllabus** refers to the relevant section of either the Junior and/or Leaving Certificate Syllabus. **Resources Required** lists the resources which will be needed in the teaching and learning of a particular topic. **Introducing the topic** (in some plans only) outlines an approach to introducing the topic. **Lesson Interaction** is set out under four sub-headings: - i. Student Learning Tasks Teacher Input: This section focuses on possible lines of inquiry and gives details of the key student tasks and teacher questions which move the lesson forward. - ii. Student Activities Possible Responses: Gives details of possible student reactions and responses and possible misconceptions students may have. - **iii. Teacher's Support and Actions:** Gives details of teacher actions designed to support and scaffold student learning. - iv. Assessing the Learning: Suggests questions a teacher might ask to evaluate whether the goals/learning outcomes are being/have been achieved. This evaluation will inform and direct the teaching and learning activities of the next class(es). **Student Activities** linked to the lesson(s) are provided at the end of each plan. #### **Aims** - To generate and be able to apply the compound interest formula - To investigate the effects of compounding over different periods - To introduce the idea of a reducing balance and depreciation #### **Prior Knowledge** Indices, simple interest calculations and calculating percentages of P using $P \times 1.05$ etc, (see Appendix, page 19). #### **Learning Outcomes** On completion of this Teaching and Learning Plan students should be able to: - · Calculate the compound interest over a number of periods - Explore the compound interest formula (page 30 of the Formulae and Tables book) - Use the calculator with this formula - Use the compound interest formula to find the value of different variables - · Convert from monthly rates to annual rates and vice versa - Explain what is meant by a reducing balance - Explain the effects of a reducing balance on interest paid on loans - Gain an understanding of depreciation | Relations | Relationship to Junior Certificate Syllabus | | | | | | |-----------------|---|--|--|--|--|--| | Topic | | Description of topic | Learning outcomes | | | | | 3.3 Appliarithm | | Solving problems involving, e.g., mobile phone tariffs, currency transactions, shopping, VAT and meter readings. Making value for money calculations and judgments. Using ratio and proportionality. | solve problems that involve finding profit or loss, % profit or loss (on the cost price), discount, % discount, selling price, compound interest for not more than 3 years, income tax (standard rate only), net pay (including other deductions of specified amounts) solve problems that involve cost price, selling price, loss, discount, mark up (profit as a % of cost price), margin (profit as a % of selling price) compound interest, income tax and net pay (including other deductions) | | | | | | <u> </u> | <u> </u> | | | | | | | |--|--|---|---|--|--|--|--|--| | Relationship to Leaving Certificate Syllabus | | | | | | | | | | Students
learn about | Students working at FL should be able to | In addition, students
working at OL
should be able to | In addition,
students working at
HL should be able to | | | | | | | 3.3 Arithmetic | check a result by considering whether it is of the right order of magnitude and by working the problem backwards; round off a result make and justify estimates and approximations of calculations; calculate percentage error and tolerance calculate average rates of change (with respect to time) solve problems involving finding depreciation (reducing balance method) costing: materials, labour and wastage metric system; change of units; everyday imperial units (conversion factors provided for imperial units) estimate of the world around them, e.g. how many books in a library | accumulate error (by addition or subtraction only) solve problems that involve calculating cost price, selling price, loss, discount, mark up (profit as a % of cost price), margin (profit as a % of selling price), compound interest, depreciation (reducing balance method), income tax and net pay (including other deductions) | - use present value when solving prob- lems involving loan repayments and investments | | | | | | #### **Resources Required** Calculator, Copy of Formulae and Tables | Lesson Interaction | | | | | | | | | | |--|--|---|---------------------------|--|--|--|--|--|--| | Student Learning Tasks: Teacher Input | Student Activities: Possible Responses | Teacher's Support and Actions | Assessing the
Learning | | | | | | | | In | Section A: Student Activity 1 | | | | | | | | | | We are now going to look at what happens when an amount or quantity is increased repeatedly by the same percentage. Using your squared paper or white boards, draw 20 identical boxes. Imagine you are paid €100 per day and you get a 20% pay rise and then another 20% pay rise. Letting each box represent €10, shade in €100. | • €100 | Distribute Section A: Student Activity 1. Draw an example of the boxes on the white board. | | | | | | | | | » Then using a different colour,
shade in 20% and write down the
amount it represents altogether. | • €120 | | | | | | | | | | » Now, using a third colour, add
20% to the entire shaded area.
How much does the shaded area
now represent? | • €144 | » Observe what students
are writing. Assist them as
required. | | | | | | | | | | tudent Learning Tasks: | St | udent A | Activitie | s: Poss | ible Res | ponses | Те | acher's | Suppo | rt and A | ctions | | | ssessing the | |-----|--|----|-------------------|---------------------|--------------------|----------|---|-----|--|-------------------|------------------|------------------|---|----|--| | _ | eacher Input | | | | | | | | | | | | | Le | earning | | × | How much was the first 20% worth? | • | €20 | | | | | | | | | | | | | | × | How much was the second 20% worth? | • | €24 | | | | | | | | | | | | | | × | How is it that one 20% is worth €20 and the next 20% is worth €24? | | than th | e the sta
was lo | d 20%.
arting a | mount f | | » | Give st
happer | udents 1
ning. | time to | discuss v | what is | » | Can
students
understand
the concept
of different
starting
amounts? | |) x | Now we are going to | » | Studen | ts fill in | the tab | le· | | l » | Ask sti | idents to | o come i | to the b | oard to | | amounts: | | " | complete a table to | " |
Days | Amount | Increase | Total | Pattern/Total | " | » Ask students to come to the board to
fill in the following table. | | | | | | | | | show how the total value increases if we repeatedly increase by | | (time
elapsed) | | by % | decimal | amount
of money
received per
day | | Days
(time
elapsed) | Amount | Increase
by % | Total
decimal | Pattern/
Total
amount
of money | | | | | 20%. | | 0 | 100 | 0% | 1 | 100 | | | | | | received | | | | | | | 1 | 120 | 20% | 1.2 | 100 x 1.2 | | | - | | | per day | | | | | | | 2 | 144 | 20% | 1.44 | 100 x 1.2
x 1.2 | | | | | | | | | | | | | 3 | 172.80 | 20% | 1.728 | 100 x 1.2 x
1.2 x 1.2 | | | | | | | | | | | | | 4 | 207.36 | 20% | 2.0736 | 100 x 1.2 | | | | | | | | | | | | | | | | | x 1.2 x 1.2 | | | | | | | | | | | | | | | | | x 1.2 | | | | | | | | | | | | | 5 | 248.832 | 20% | 2.48832 | 100 x 1.2 x | | | | | | | | | | | | | | | | | 1.2 x 1.2 x
1.2 x 1.2 | | | | | | | | | | | | | | | | | 1.2 X 1.2 | | | | | | | | | **Teacher Reflections** | Student Learning Tasks:
Teacher Input | Student Activities: Possible Responses | Teacher's Support and Actions | Assessing the
Learning | |--|--|--|---| | » If we were to graph the data from the table, what would it look like? » Let's graph the information and see what it looks like. | It increases at the same rate so is it linear? The amount it increases by doesn't stay the same so it isn't linear. | » Ask a student to come to the board to fill in the blank graph below. | » Do students
understand
the concept of
dependent and
independent
variables? | | » What two variables will we put on the graph? | Time and amount of money. | | | | » On which axis will we put them? | Time goes on the horizontal axis because that is going to happen anyway. | | | | | As time is the independent variable, it goes on the horizontal axis. | | | | Student Learning Tasks:
Teacher Input | Student Activi | ties: Poss | ible Re | espons | es | Teacher's Support and Actions | Assessing the
Learning | |--|--|------------|---------------------|---------|--------------------------|--|---| | _ | ** On white bostudents dra 300 280 280 260 240 220 200 180 160 140 120 100 80 60 40 20 | ards/copie | es/ Stud | _ | | 1 | _ | | » Is the relationship between time and amount of money linear? » Is there anything else we could discover using the pattern from the table? Note: The points are not joined up as the relationship with time and amount is discrete. | • It isn't a stra between tim • Could we ge and time? • We could we the amount | t a formu | ount is
la relat | not lin | ear.
amount
d give | » Engage students in discussing the pattern. | » Can students
make the
connection
between a linear
relationship and
a constant rate
of change? | **Teacher Reflections** **Teacher Reflections** ## Maths Tionscadal Mata Development Team **Teacher Reflections** ## Section B: Student Activity 2 Discovering the formula - » We are going to discover a general rule which will apply to all cases similar to the one we encountered in Section A. - Working in pairs, do Question 1 from Section B: Student Activity 2. © Project Maths Development Team 2012 www.projectmaths.ie | | Tab | le 1 | | | | | |---|----------|---|-----------------------------|--|--|--| | Method 1 | | Method 2 | | | | | | Principal (P) | 5,000 | i = | 0.04 | | | | | Interest for
the 1st year
(4% of 5,000) | 200 | (1 + <i>i</i>) = | 1.04 | | | | | Final Value (end year 1) 5,200 | | Calculate the value of (end year 1) $P \times (1 + i)$ Answer \rightarrow | 5,000 x
1.04
5,200 | | | | | Interest for
the 2 nd year | 208 | (1 + <i>i</i>) = | 1.04 | | | | | Final Value
(end year 2) | 5,408 | Calculate the value of (end year 2) $P \times (1 + i)$ Answer \rightarrow | 5,200 x
1.04
5,408 | | | | | Interest for
the 3 rd year | 216.32 | (1 + <i>i</i>) = | 1.04 | | | | | Final Value
(end year 3) | 5,624.32 | Calculate the value of (end year 3) $P \times (1 + i)$ Answer \rightarrow | 5,408 x
1.04
5,624.32 | | | | » Distribute Section B: Student Activity 2. » Are students using their answers? student answer/response the terms principal, interest and rate as they are presenting **Note:** i is the interest rate expressed as a decimal. - » Circulate to monitor progress. Facilitate discussion if there are difficulties. - » Ask a student to fill in the answers on the board as others call them out. - » Allow students to discuss their answers. KEY: » next step | Student Learning Tasks: | St | udent A | ctivitie | s: Poss | ible Res | ponses | Teacher's Support and Actions | | | | Assessing the | | | | |---|----|-------------------|----------|---------------------|-----------|-----------------------------|-------------------------------|----------------------------|----------|------------------|-------------------|---|---------|---| | Teacher Input | | | | | | | | | | | | Le | earning | | | » Looking at the table,
which of the methods is
closest to what we used | | | | | | | » | | | _ | able on ents of ! | | » | see the
similarity | | in Section A?» Work in groups and using the same idea as in Section A, try and | » | Studen
Method | | lete tal | ole. | | | Years
(time
elapsed) | Amount | Increase
by % | Total
decimal | Pattern/
Total
amount
of money
received
per year | | between what was done in Section A and this question? | | get the general rule or | | Years | Amount | Increase | Total | Pattern/ | | 0 | 5,000 | 4% | | igwdown | | | | formula for this instance. | | (time
elapsed) | | by % | decimal | Total
amount | | 1 | | 4% | | | | | | You may use the table on the board. | | | | | | of money
received | | 3 | | 4% | | | | | | on the board. | | | | | | per year | | | | 4 /0 | | | | | | | | 0 | 5,000 | 4% | 1 | 5,000 | | | | | | | | | | | | 1 | 5,200 | 4% | 1.04 | 5,000 x
1.04 | | | | | | | | | | » Write out the entire sum | | 2 | 5,408 | 4% | 1.0816 | 5,000 x
1.04 x
1.04 | | | | | | | » | Can students verbalise what | | with the final answer. | | 3 | 5,624.32 | 4% | 1.124864 | 5,000 x
1.04 x
1.04 x | | | | | | | | they have discovered? | | » Now write it out in words, explaining what each term means. | | | | | | 1.04 | | | | | | | | | | each term means. | • | €5,000 | x 1.04 > | (1.04 x | 1.04 | | » | Write € | €5,000 > | د (1.04)³ | = €5,62 | 24.32 on | | | | » Each explanation is | • | €5,000 | x (1.04) | 3 | | | | the boa | | | | | | | | correct but it might be easier if we all used | • | €5,000 | x (1.04) | ³ = €5,0 | 524.32 | | » | Ask a n | number | of stud | ents to | give | | | | the same terminology | • | | | | tiplied b | • | | | | _ | and ex | plain | | | | and abbreviations. Let's | | | | | he numl | ber of | | their re | easoning | g. | | | | | | look at page 30 of the Formulae and Tables | | years g | ives the | answe | r. | | » | Fill in t | he table | e on the | e board | as per | | | | book. | | | | | | | | column | n 2. | | | | | | **Teacher Reflections** | Student Learning Tasks: Teacher Input | Student Activities: Possible Responses | Teacher's Support and Actions | Assessing the
Learning | |--|---|--|---------------------------| | » Now write out the general rule for Section
A in the same order as the formula in the
Formulae and Tables book. | $\bullet F = P(1+i)^t$ | • Write the formula from the tables on the board: $F = P(1 + i)^{t}$ | | | » Using €5,000 x $(1.04)^3 = €5,624.32$ and the formula in the tables, rewrite the equation to look like the original formula. | • €5,624.32 = 5,000 (1+0.04) ³ | | | **Teacher Reflections** | Student Learning Tasks: Teacher Input | Student Activities: Possible Responses | Teacher's Support and Actions | Assessing the Learning | |--|---|--
---| | Section C: Student A | ctivity 3 Investigati | ng the Compour | ding Period | | » Is it useful to be able to predict how
much money you will have, Section C:
Student Activity 3, in the future if you
have a savings account for a specific
reason? | It is, because you need to know how long to save for. You might decide to save more each week/month to get the full amount faster. | | | | » What do you need to know to work this out? | The rate of interest. | | | | » If all we need to know is the rate
of interest, what would the rate of
interest be after 1 year at 1% per
month. | Would it be 12% if it's 1% per month? Would it be (1 + 0.1)¹²? | | | | » Using the formula we discovered in the last exercise, see what €100 amounts to after 12 months at 1% per month. | >> Students use the formula: $F = P(1 + i)^t$ • $F = €100(1 + 0.1)^{12}$ • $F = €112.68$ | » Ask a student to write
the formula on the
board: $F = P(1 + i)^t$ | Can the students recognise that the 1% per month compounded is | | » Why did we get €12.68 interest? | If we added the interest
each month, we start with
a higher amount when the
next round of interest was
calculated. | » Write Annual
Equivalent Rate on the
board. Then write the
abbreviated version of
AER. Ask students to
bring in advertisements | actually 12.68% over
the whole year and
not 12%? | | » Is 12% per annum compounded once
for 1 year the same as 1% per month
compounded 12 times? | • No. | from the papers with AERs on them. | | | » The monthly rate is 1% which equates to an Annual Equivalent Rate (AER) of 12.68%. | | | | **Teacher Reflections** | Student Learning Tasks:
Teacher Input | Student Activities: Possible
Responses | Teacher's Support and Actions | Assessing the
Learning | | |--|--|--|---|--| | » So what would 1.5% compounded per month per year be? | • (1.015) ¹² = 1.1956 => the AER is 19.56% | » Ask similar questions and get class
to work out the AER. | » Can students
verbalise how
to convert a
monthly rate | | | » What would the general
formula be to find an
annual rate if given the
monthly rate? | • $(1+i)^{12}$ | | to an AER.
i.e. (1+i) ¹² and
vice versa? | | | » If you were given the annual rate AER what would be the monthly rate? | • $(1.015)^{12} = 1.1956$
i = 0.1956
19.56 AER | » Distribute Section C: Student Activity 3. » Ask a student to fill in the relevant | » Are students able to fill in the boxes without | | | » Let's see if we can use what we've learned already | $0.1956 + 1 = (1 + i)^{12}$ $(1.1956)^{1/12} = 1.015$ $1.015 - 1 = 1.5\%$ | » Ask a student to fill in the relevant values. Allow discussion to take place. | difficulty? | | | to calculate the principal which will yield a particular amount at the end of a given time period. | » Students work on Student Activity 3. | P F (1 + i) t 5,083.49 | » Can they distinguish correctly between P | | | » Working in pairs, doStudent Activity 3,Questions 1-3. | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | » Write the formula $F = P (1 + i)^t$ on the board. | and F ? | | | | » Students work out the rate of | » Again, ask a student to do out the answer on the board. | | | | » Can we find out the rate of interest needed if we know | interest. $\begin{array}{ c c c c c c }\hline P & F & (1+i) & t\\\hline \end{array}$ | P F $(1+i)$ t | | | | the principal is €7,000 and the final amount is €10,000 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 9.32% | | | | after 4 years. | » Students complete Student | » Again, ask a student to do out the answer on the board. [If students | » Are students comfortable | | | » Now do Student Activity 3,
Question 4. | Activity 3, Question 4. | have difficulty with getting the $n^{ ext{th}}$ root, this should be revised.] | getting n^{th} roots? | | | Student Learning Tasks: | Student Activities: Possible | Teacher's Support and Actions | Assessing the | |--|---|--|--| | Teacher Input | Responses | | Learning | | | Section D: Student Activi | ity 4 Depreciation | | | An item was being produced for €16 twenty years ago. Due to technological innovations, the production cost was reduced by 10% ten years ago and reduced again by 10% this year. How much does it now cost to produce? Could we use the formula we have been using to calculate this? Let's look at the change in the cost over each of the intervals using a table and | 16 x 0.1 = 1.6 €16 - 1.6 = €14.40 14.40 x .01 = 1.44 €14.40 - 1.44 = €12.96 Yes, because you are dealing with the same things, final amount, principal, rate of interest. We should subtract i as the final amount is getting smaller. | » Draw a blank table on the boa Ask students to copy it into the copy books and fill in the relevance. | neir generate an | | our formula $P(1+i)^t$. However, if you think about it, if something is depreciating should I add or subtract i ? | | figures. Time Interval Pattern of the T | depreciation and understand that we use $F = P(1 - i)^t$? | | | _ | | | a. Descible Descrepas | | | A a a a a a lu ur Ala a | |--|----|--|-----------------------|---|-----------------|-------------------|-------------------------| | Student Learning Tasks: Teacher | St | Student Activities: Possible Responses | | | | Teacher's Support | _ | | Input | _ | | | | | and Actions | Learning | | | • | Table | | | | | » Can students | | | | Time in years | Interval | Pattern of the amount of money at the end of each year. | Total
amount | | verbalise why
we use | | | | 0 | | 16 | 16 | | $F = P (1 - i)^t$ | | | | 10 | 1 | $F = P (1 - i)^t$ | 14.4 | | instead of | | | | | | $F = 16 (1 - 0.1)^{1}$ | | | $F = P (1 + i)^t$ | | | | | | $F = 16 (.9)^1$ | | | for | | | | | | F = 14.4 | | | depreciation? | | | | 20 | 2 | $F = P (1 - i)^t$ | 12.96 | | | | | | | | $F = 16 (1 - 0.1)^2$ | | | | | | | | | F = 16 (0.9) 2 | | | | | | | | | F = 12.96 or F = 14.4 (1 - 0.1) | | | | | | | | | • | | | | | | | Formula | a | | | | | | | | F = P (1 | $-i)^t$ | | | | | | | | F = 16 (| I - 0.1) ¹ | | | | | | | | F = 16 (. | 9)¹ | | | | | | | | <i>F</i> = 14.4 | | | | | | | | | F = P (| $(-i)^t$ | | | | | | | | F = 16 (| | ! | | | | | | | F = 16 (| • | | | | | | | | F = 12.9 | 96 | | | | | | » Can we see from the table if the | • | | | nange is constant, isn't the | | » Allow students | | | relationship between total amount | | relation | | | | time to discuss. | | | and time is linear or would we | • | | | goes down uniformally, woul | dn't the | | | | need to draw a graph? | | relation | | | | Note: this | | | » It is obvious from the table that | • | A graph | might | be helpful as well. | | misconception | | | the relationship between amount | | | | | | needs to be fully | | | and time is not linear. Using the | | | | | | explored. | | | figures you have, draw a graph with time and amount. | | | | | | | | | with time and amount. | | | | | | | | | Student Learning
Tasks: Teacher Input | Student Activities: Possible Responses | Teach | er's Sup | S | Assessing the
Learning | | |--|--|----------------------------|----------------------|--|---------------------------|---| | Ask the students to indicate the appropiate axes for | Amount 16 (0,16) (10,14,4) | | o throu | le up and ask a st
gh the changes | tudent
Amount | » Do students
understand
the concept of | | time and amount.
Get them to explain
their
reasoning. | 12 (20,12.96) | | | amount of money
at the end of each
year. | | dependent and independent variables? Are | | » Ask students to | 10. (50,9.45) | 0 | | 16 | 16 | they aware
of how they | | calculate the | 8 | 10 | 1 | F = 16 (1 - 0.1) | 14.4 | should be | | amount for | 6 | 20 | 2 | F = 16 (1 - 0.1) ² | 12.96 | plotted? | | T = 3, 4 and 5. | | 30 | 3 | $F = 16 (1 - 0.1)^3$ | 11.66 | | | | 4 | 40 | 4 | F = 16 (1 - 0.1) ⁴ | 10.50 | » Can the | | | 2 | 50 | 5 | F = 16 (1 - 0.1) ⁵ | 9.45 | students relate
the rate of | | What do we see? Is the graph increasing or decreasing? Is the decrease/ change getting bigger or smaller? If the relationship is not linear, what kind of relationship might it be? How can we decide which it is? | It's a curve It's not linear The graph is decreasing It's going down The decrease/change is getting smaller It could be quadratic or exponential If it's quadratic, isn't the 2nd difference constant? If it's exponential, the 2nd change isn't the same Exponential relationship has change in a ratio | miscor
expon-
any co | ception
ential re | and expand any
s regarding linea
lationships and r
eas that are offer | einforce | change with
the type of
relationship? | | Student Learning Tasks:
Teacher Input | Student Activities: Possible
Responses | Tea | acher | 's Supp | ort and Action | S | | Assessing the Learning | |---|--|-----|--------|-----------------|---|------------|--------------|------------------------| | » Continuing the pattern, what would the next | • 11.66, 10.50 and 9.45. | | | studen
oard. | t to write the a | nswers o | n | | | three amounts be?What are we doing to get each amount? | • We are using the formula $F = P (1 - i)^t$ | | Time | Interval | Pattern of the amount of money at the end of each year. | Amount | | | | | | | 0 | | 16 | 16 | | | | Looking at the changes, and your graph, can | It's an exponential relationship. | | 10 | 1 | F = 16 (1 - 0.1) | 14.4 | | | | we decide on the | it's an exponential relationship. | | 20 | 2 | F = 16 (1 - 0.1) ² | 12.96 | | | | relationship? | | | 30 | 3 | F = 16 (1 - 0.1) ³ | 11.66 | | | | | | | 40 | 4 | F = 16 (1 - 0.1) ⁴ | 10.50 | | | | | | | 50 | 5 | F = 16 (1 - 0.1) ⁵ | 9.45 | | | | Complete Section D Student Activity 4. | » Students should try Section D:
Student Activity 4, compare
answers around the class and
have a discussion about why the
answers are not all agreeing | » | Distri | bute S e | ection D: Studen | t Activity | , 4 . | | **Teacher Reflections** **Teacher Reflections** | Student Learning
Tasks: Teacher Input | Student Activities: Possible Responses | Teacher's Support and Actions | Assessing the
Learning | |--|---|---|---| | » Now do Section E:
Student Activity 5,
questions 6 and 7. | Students complete Section E: Student Activity 5, questions 6 and 7. Students present their graphs to the class and discuss their findings. | Suggested further investigation: Investigate the effect of two people taking out the same loan, making equal repayments, but being charged a different rate. Compare the balances and the interest being paid throughout the term of the loan. (E.g. A loan of €900, with both people paying €100 per month, but person 1 is charged an annual interest rate of 10%, while person 2 is charged an interest rate of 8%.) | » Can students verbalise their reasoning? | **Teacher Reflections** ### **Appendix** ## **Revision of Prior Knowledge Required** The teacher may use some or all of the following activities in preparing this topic. This document covers the following: - 1. The terms used - 2. Interest rate as r/100 - 3. Adding (or subtracting) the decimal rate to/from the unit - 4. Multiplying indices - 5. Calculating simple interest and checking it - 6. Basic calculator skills. #### **Terms used:** | 1. | John put €200 into the bank for 1 year and got 10% interest during that year. | |----|---| | | At the end of the year he had €220. This means that he had gained €20 on his | | | investment. Match John's figures to each of the words in the table below. | | Principal | Interest rate | Final Value | No. of years | Interest | |-----------|---------------|-------------|--------------|----------| | | | | | | | 2. | Mary put €600 into the bank for 2 years at 9% per annum and at the end of | |----|--| | | the 2 years she had €712.86 in total. Complete the table below to illustrate | | | this | | Principal | Interest rate | Final Value | No. of years | Interest | |-----------|---------------|-------------|--------------|----------| | | | | | | | 3. | The following figures represent a certain amount of money put into a bank for a certain number of years at a certain interest rate. Using all of the words in the table above, write out a few sentences which would explain all of these figures. Figures: €472.05, 4 yrs, €300, 12%, €172.05 | |----|--| | | | | | | | | | ### Appendix (continued) #### 4. Complete the table below. Note: p.a. means per annum (per year) | Name | Principal | Interest rate % (p.a.) | Final Value | No. of years | Interest | |---------|-----------|------------------------|-------------|--------------|-----------| | Anne | €1,000.00 | 6% | €1,338.23 | 5 | | | Michael | €1,000.00 | 7% | | 9 | €838.46 | | Dominic | | 8% | €5,038.85 | 3 | €1,038.85 | | Joseph | | 14% | €12,370.79 | 5 | €5,945.79 | | Eileen | €580.00 | 7% | €870.42 | 6 | | #### Interest rate as r/100 A percentage is a fraction having a denominator of 100. Therefore 9% means 9/100 which is 0.09 as a decimal. Therefore an annual interest rate of 9% could be written as a decimal as 0.09. | The data below shows some percentages. Convert these to decimals. | The data below shows some decimals. Convert these to percentages. | | | |---|---|--|--| | 1. 6% | 8. 0.07 | | | | 2. 3% | 9. 0.08 | | | | 3. 5% | 10. 0.16 | | | | 4. 4.5% | 11. 0.2 | | | | 5. 12% | 12. 0.075 | | | | 6. 18% | 13. 0.0125 | | | | 7. 3¾ % | This is the " i " in the Formulae and Tables book. | | | #### Adding/subtracting the decimal rate to/from the unit For the work which follows the decimal rate is added/subtracted to/from the unit. The unit is 100% i.e. 100/100 = 1). For example if the annual rate is 7% then the decimal rate is 0.07 and the unit added to this is 1.07. In the table below some of the figures are missing. Complete the table. | Decimal Rate (i) | i added to the unit $(1 + i)$ | Decimal Rate (i) | i subtracted from the unit (1 - i) | |------------------|-------------------------------|------------------|---------------------------------------| | 1. 0.02 | | 1. 0.05 | | | 2. 0.09 | | 2. 0.07 | | | 3. 0.17 | | 3. 0.13 | | | 4. 0.03 | | 4. 0.19 | | | 5. 0.3 | | 5. 0.2 | | | 6. 0.25 | | 6. 0.085 | | | | 7. 1.05 | | 7. 0.08 | | | 8. 1.035 | | 8. 0.09 | | _ | 9. 1.1 | | 9. 0.88 | | | 10. 1.01 | | 10. 0.94 | ### Appendix (continued) #### **Multiplying indices** On page 21 Formulae and Tables book it says $a^p a^q = a^{p+q}$ at the top of the page An example of this would be $k^5 \times k^4 = k^9$ (since 5 + 4 is 9) Complete the following table, without the use of a calculator. Leave your answer in index form: | Before multiplying | After multiplying | Before multiplying | After multiplying | |--|-------------------|--|-------------------| | 1. a ⁷ x a ³ | | 6. 1.02 ³ x 1.02 ³ | | | 2. 8 ³ x 8 ² | | 7. 1.14 ⁵ x 1.14 ² | | | 3. 8.2 ⁵ x 8.2 ² | | 8. 1.06 ⁴ x 1.06 | | | 4. (6.4) ⁵ (6.4) ² | | 9. (1.08) ⁵ (1.08) | | | 5. 1.3 ² x 1.3 ⁵ | | 10. 1.07 x 1.07 ⁵ | | #### Calculating simple interest and checking it 1 Patrick puts €400 into the bank for 1 year and gets an annual interest rate of 4%. At the end of the year he asks the bank how much money he has in total and how much interest he earned. Fill out the table below to see what figures the bank might give him. | are warming to give thin | | |--|---| | Method 1 | Method 2 | | Principal | If the annual rate is 4% then $i =$ | | | fill in the
value of i | | Interest for the year (calculate 4% of €400) | Fill in the value of the unit $(1 + i) =$ | | Final value | Calculate the value of P x $(1+i)$ (i.e. final value) | | Did both methods give the same | e final value? | | |--------------------------------|----------------|--------------| | Patrick had a final value of € | and earned € | in interest. | 2. Kathleen puts €200 into the bank for 1 year and gets an interest rate of 8% during that year. Use method 1 and method 2 to work out how much she had in the bank and how much interest she earned during the year. | Method 1 | Method 2 | | | |--|---|-----------|--| | Principal | If the annual rate is 4% then fill in the value of i | i = | | | Interest for the year (calculate 4% of €400) | Fill in the value of the unit | (1 + i) = | | | Final value | Calculate the value of P x $(1 + i)$ (i.e. final value) | | | | Did | the | both | methods | aive | the | same | final | value? | | |-------------------------------------|------|------|-----------|-------|------|--------|--------|--------|--| | $\mathbf{D}_{\mathbf{I}}\mathbf{G}$ | CIIC | | THE CHOOS | GIVC. | CIIC | Juille | IIIIGI | value. | | Kathleen had a final value of € _____ and earned €_____ in interest. ## Appendix (continued) 3. Raul puts €900 into the bank for 1 year and gets an interest rate of 7% during that year. Use method 2 to work out how much he had in the bank at the end of the year. Then find out how much interest he earned during the year. #### **Checking Understanding** Write out, in your own words, the meaning of each word and term in the table below. | Word or Term | Explanation | |----------------------|-------------| | Principal | | | Final Value | | | Interest | | | Annual Interest Rate | | | i | | | 1+i | | | p.a. | | #### **Basic Calculator Skills** Evaluate the following using your calculator: | (a) $7^4 =$ | (h) 10 (3) ⁴ = | |--------------------------|-------------------------------| | (b) $4.5^4 =$ | (i) $100 (6)^3 =$ | | (c) $1.8^5 =$ | (j) $1,000 (2.5)^3 =$ | | (d) $1.06^6 =$ | (k) $300 (1.03)^6 =$ | | (e) 1.325 ⁵ = | (I) $2,000(1.025)^5 =$ | | (f) $(3/2)^7 =$ | (m) 250 (1.16) ⁴ = | | (g) $(1/2)^4 =$ | (n) 400 (1.08) ⁴ = | In the following table, fill in the correct figures: | (a) $3^2 = 9$ | (i) $5^3 = 125$ | |------------------------|--| | (b) $\sqrt{9} = 3$ | (j) $\sqrt[3]{x} = 5$ | | (c) $2^4 = x$ | (k) $(3.2)^2 = 10.24$ | | (d) $\sqrt[4]{16} = x$ | (I) $\sqrt{x} = 3.2$ | | (e) $2^5 = 32$ | (m) $(3.6)^3 = 46.656$ | | (f) $\sqrt[5]{32} = x$ | (n) $3.6 \times 3.6 \times x = 46.656$ | | (g) $2^6 = x$ | (o) $(1.02)^8 = ?$ | | (h) $x\sqrt{64} = 2$ | | ## **Section A: Student Activity 1** | Investi | gating | Compoun | d | Interest | |---------|--------|---------|---|----------| | | 9 | | | | - 1. If each block represents €10, shade in €100. - 2. Then, using another colour, add 20% to the original shaded area. - 3. Finally, using a third colour, add 20% of the entire shaded area. - 4. What is the value of the second shaded area? - 5. What is the value of the third shaded area? - 6. Why do they not have the same amount?_____ - 7. Complete the following table and investigate the patterns which appear. | Time/day | Amount | Increase by | Total decimal | Pattern/Total Amount of money received per day | |----------|--------|-------------|---------------|--| | 0 | | 0% | | 100 | | | €120 | 20% | 1.2 | 100 x 1.2 | | | | | | | | | | | | | | | | | | | 8. Can you find a way of getting the value for day 10 without having to do the table to day 10?_____ 9. Use the diagram on the right to graph linear? ## **Section B: Student Activity 2** ## **Discovering the Formula** Mary received a gift of €5,000. She is hoping to buy a car costing €6,000 with her savings in 3 years time. She intends to invest the €5,000 until then. The bank is offering her interest of 4% p.a. She leaves it in for the 3 years. Will she be able to afford to buy the car? | Method 1 | Method 2 | Method 2 | | |---|---|----------|--| | Principal (P) | i = | | | | Interest for the 1st year (4% of 5,000) | (1+i) = | | | | Final Value (end year 1) | Calculate the value of (end of year 1) using $P \times (1 + i)$
Answer \rightarrow | | | | Interest for the 2 nd year | (1+i) = | | | | Final Value (end year 2) | Calculate the value of (end of year 2) using $P \times (1 + i)$
Answer \rightarrow | | | | Interest for the 3 rd year | (1+i) = | | | | Final Value (end year 3) | Calculate the value of (end of year 3) using $P \times (1 + i)$
Answer \rightarrow | | | | 1. | Does this amount to the proof of the formula? Discuss. | | | | | | |----|--|-----------------------------------|-----------------------------------|--|--|--| | 2. | Write a sentence explainin bank savings. | | | | | | | 3. | Write the value of the interest for the 1st, 2nd and 3rd years in the boxes below. | | | | | | | | Interest for 1st year | Interest for 2 nd year | Interest for 3 rd year | | | | | | | | | | | | | 4. | Fill in the appropriate values: a. Principal = b. Total interest = c. Final value = | | | | | | | 5. | tire equation in the same | | | | | | ## **Section C: Student Activity 3** ## **Investigating the Compounding Period** John wants to have €10,000 saved in 10 years time to pay for his child's education. The bank is offering him an annual interest rate of 7%. How much money would he need to put in now in order to have €10,000 in 10 years time? Round off to the nearest €100. 1. Fill as many variables as you can into the table below | P | F | (1 + i) | t | |---|---|---------|---| | | | | | 2. Use the boxes below to find the value of P $$= P$$ Use your calculator to evaluate $(1 + i)^t$ 3. How much, to the nearest euro, should John deposit in the bank?_____ ## **Section C: Student Activity 3** (continued) #### 4. The formula for compound interest is $F = P(1 + i)^t$ Using the relevant $n^{\rm th}$ root, find the rate of interest applied to get the final sum from the principal sum. Remember that you are working with money so rounding to the nearest cent has occurred. The rates should be written to one decimal place (AER) for this exercise. #### Example: | F | P | F/P | (1+i) | t | Rate | |-----------|--------|-------------------|-----------------------------|---|------| | 15,918.12 | 15,000 | 15,918.12/15,000= | $\sqrt[3]{1.061208} = 1.05$ | 3 | 5% | | | | 1.061208 | | | | #### Complete the following: | | F | Р | F/P | (1+i) | t | Rate | |-----|-----------|--------|----------|-------|---|------| | i | 11,576.25 | 10,000 | 1.157625 | | 3 | | | ii | 8,268.75 | 7,500 | 1.1025 | | 2 | | | iii | 1,215.51 | 1,000 | 1.21551 | | 4 | | | iv | 5,970.26 | 5,000 | 1.194052 | | 6 | | © Project Maths Development Team 2012 ## **Section D: Student Activity 4** ## **Depreciation** - 1. The selling price $\in S$ of a car after t years can be expressed as follows: $S = 25000 (0.9)^t$ - a. What is the current selling price of the car? - b. What will be the selling price of the car after 3 years? - 2. Mary has gone on a diet. Her weight w kg after t weeks is given by $w = 50(2)^{-0.01t}$ - a. Find her current weight. - b. Find her weight after 10 weeks. - 3. The current value of a vehicle is €18,000 and it depreciates by 25% every year. - a. Express the value of the vehicle after t years in terms of t. - b. What kind of a function is obtained in part (a)? - c. What is the percentage change in the value of the vehicle after 2 years? - 4. Conor makes a New Year's resolution and plans to keep fit for the coming year. His target is to decrease his current weight of 80 kg by 1% each week in the coming months. If Conor reaches his target each week, - a. Express his weight after t weeks in terms of t. - b. Find his weight after 4 weeks. - c. Find the percentage change in his weight after 4 weeks. ## **Section E: Student Activity 5** ## **Reducing Balance** | David and Michael are going on the school tour this year. They are each taking out a loan of €600, which they hope to pay off over the next year. Their bank is | |--| | charging a monthly interest rate of 1.5% on loans. David says that with his part-
time work at present he will be able to pay €100 for the first 4 months but will only | | be able to pay off €60 a month after that. Michael says that he can only afford to | | pay €60 for the first 4 months and then €100 after that. Michael reckons that they are both paying the same amount for the loan. Why? | | | **Note:** This problem is posed based on the following criteria: (a) A loan is taken out (b) After 1 month interest is added on (c) The person then makes his/her monthly repayment. This process is then repeated until the loan is fully paid off. | | David | | | Michael | | | |------|---------|----------|---------|---------|----------|---------| | Time | Monthly | Interest | Payment | Monthly | Interest | Payment | | | Total | | | Total | | | | 0 | | | | | | | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 1. What do David and Michael have in common at period? | t the beginning of the loan | |--|-----------------------------| | 2. Calculate the first 3 months transactions for each they each paid back after 3 months?) David | | | 3. What is the total interest paid by
each? David _ | Michael | | 4. Based on your answers to the first 3 questions, making the higher payments and why? | | | 5. Is Michael's assumption that they will eventuall valid? | y pay back the same amount | ## **Section E: Student Activity 5** (continued) - 6. Using the above, plot the amount of interest added each month to both David's and Michael's account. - 7. Looking at the graph, who will pay the most interest overall? ______