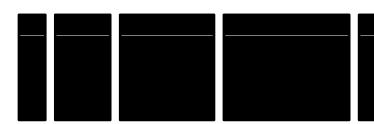
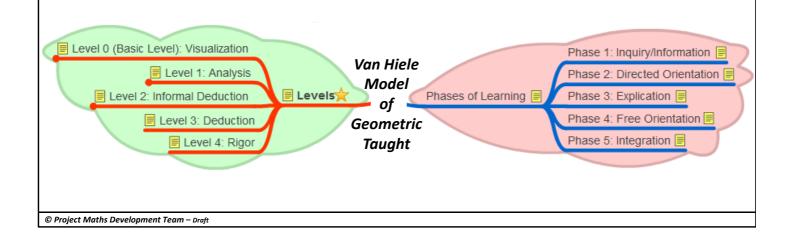
4 Week Modular Course in Geometry and Trigonometry Strand 1

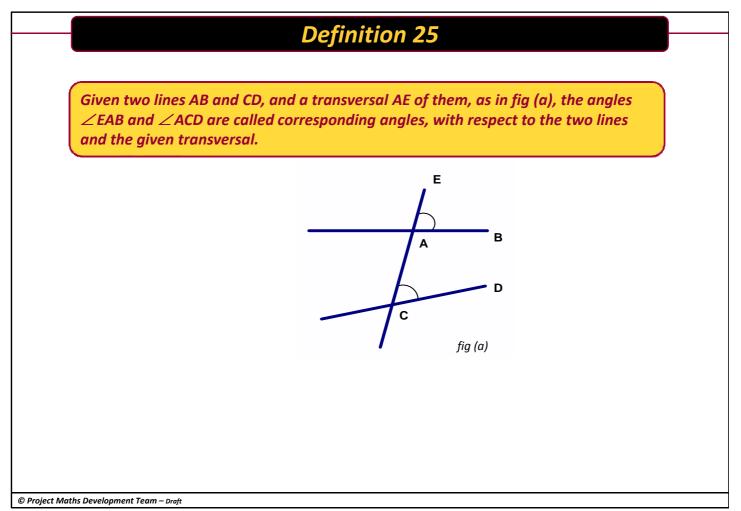


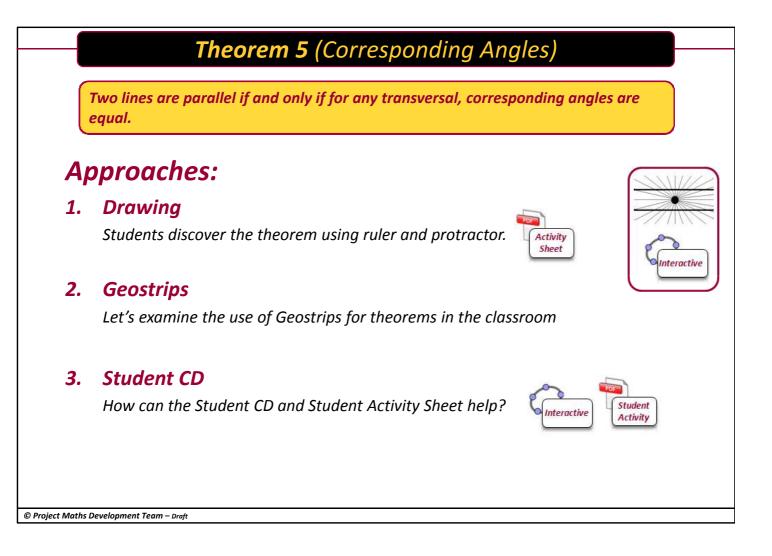


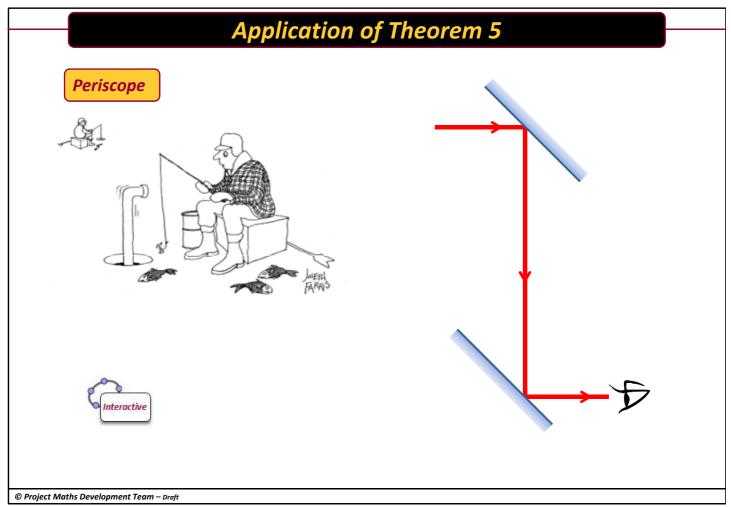
Theorems: A Discovery Approach

"Theorems are full of potential for surprise and delight. Every theorem can be taught by considering the unexpected matter which theorems claim to be true. Rather than simply telling students what the theorem claims, it would be helpful if we assumed we didn't know it... it is the mathematics teacher's responsibility to recover the surprise embedded in the theorem and convey it to the pupils. The method is simple: just imagine you do not know the fact. This is where the teacher meets the students".



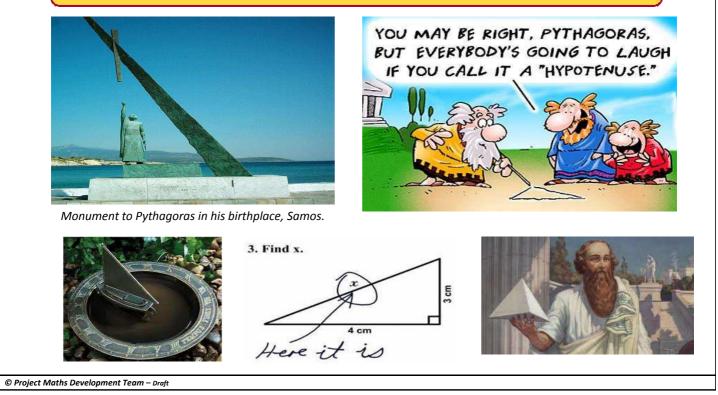


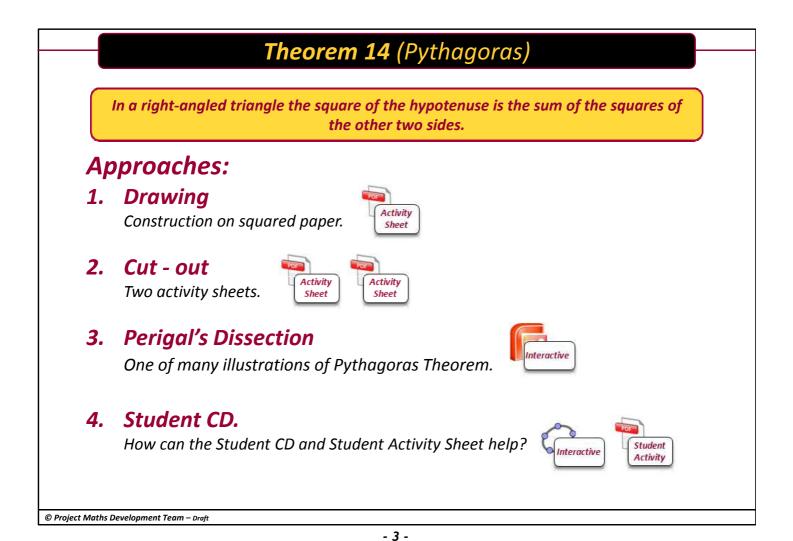




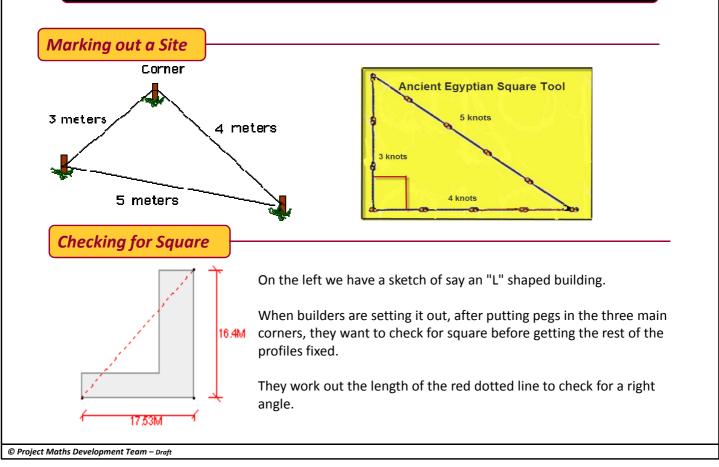
Theorem 14 (Pythagoras)

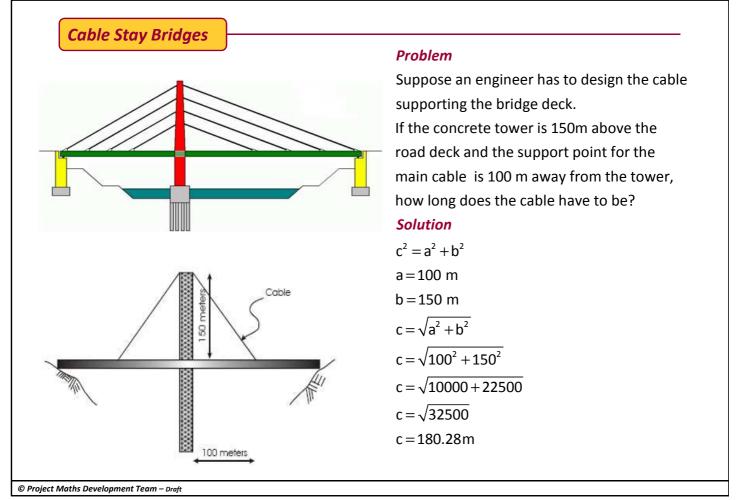
In a right-angled triangle the square of the hypotenuse is the sum of the squares of the other two sides.

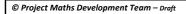




Applications of Theorem 5 and its Converse







Some More Applications

The dimensions of your TV cabinet are 18" by 24". You want to buy a TV with a 27" screen in the 16 : 9 format. Check to see if it will fit in your cabinet before you go and purchase it?

eractiv

Given that the second story window is 4.5 m above the ground and the only sure footing for the ladder is at least 2m from the house, can a window cleaner who has a ladder of length 5m reach the window to clean it?

Practical Problem 1

Practical Problem 2

Pythagoras' theorem is used in *fractal geometry* e.g. Movie

Triangulation helps to locate a cell phone making an emergency call. It might use the Sine Rule to find the phone. The law of

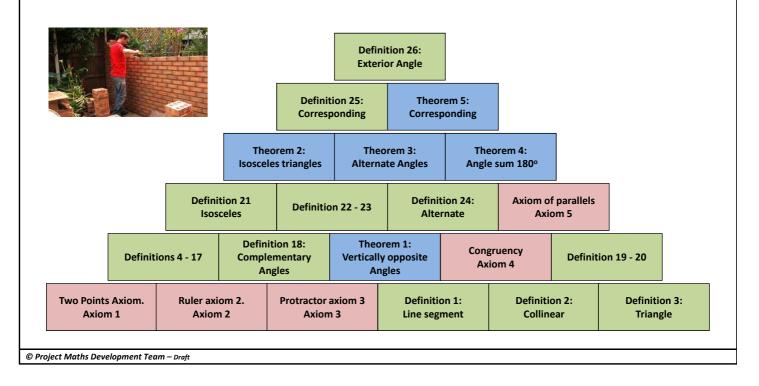
and Video game environments are drawn in 3-D using triangles.

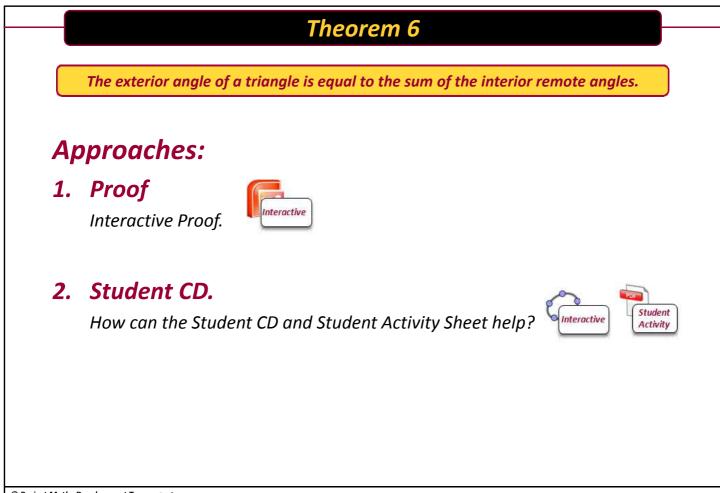
cosines can also reduce to the Pythagorean theorem.

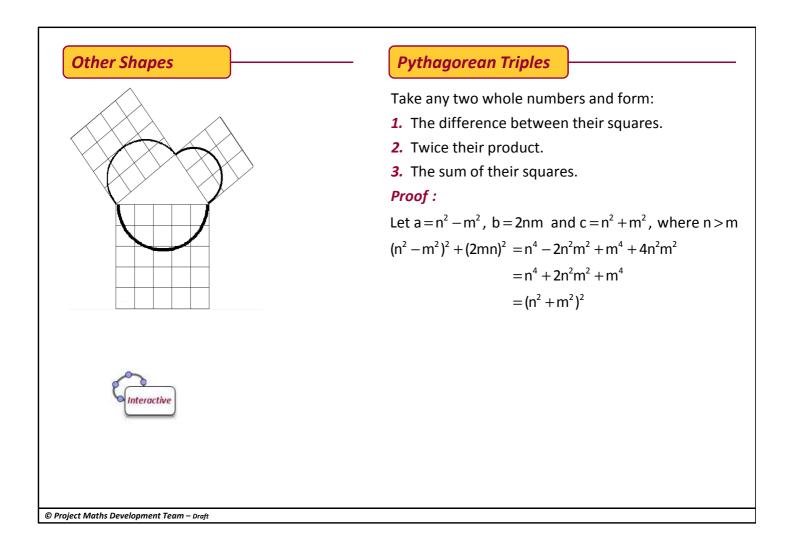
Towards Geometric Proofs

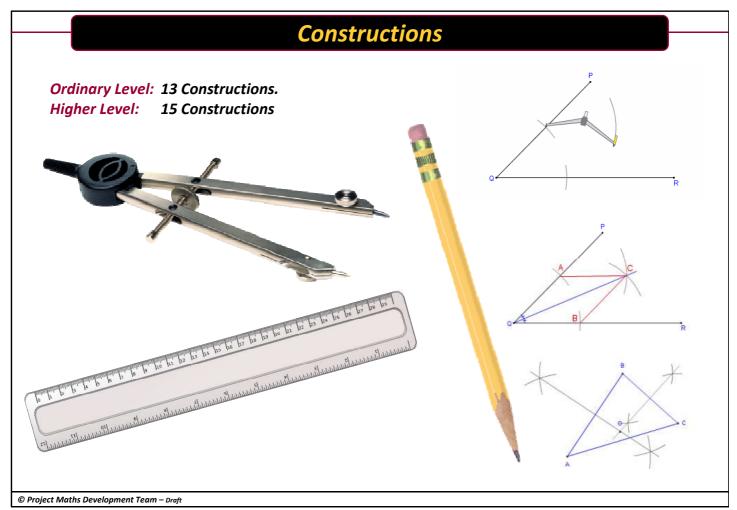
Consider a geometry wall: the foundations of the wall consist of the early axioms and definitions. Each conclusion builds upon previous knowledge.

The cement holding the wall together is the deductive logic that is used to prove the next theorem.



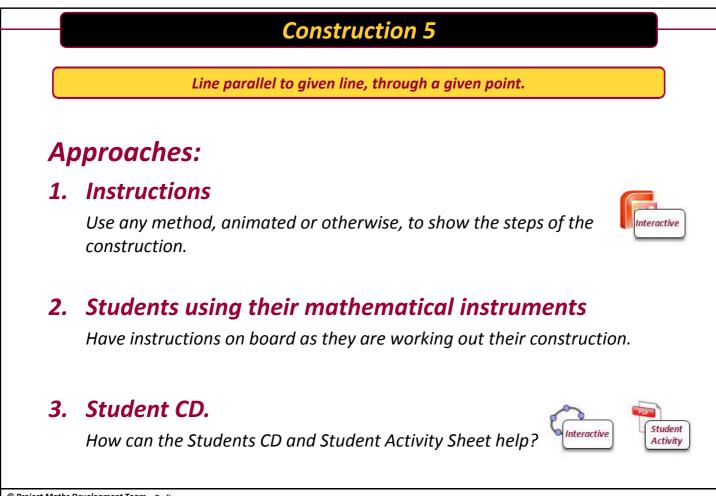






Ready Reckoner

	Constructions			Junior Certificate			Leaving Certificate			
	(Supported by 46 definitions, 20 propositions, 5 axioms and 21 theorems)		OL	HL	FL	OL	Ή			
1	Bisector of an angle, using only compass and straight edge.	•	•	•	•	•	٠			
2	Perpendicular bisector of a segment, using only compass and straight edge.	•	•	•	٠	•	•			
3	Line perpendicular to a given line l, passing through a given point not on l.		•	٠			•			
4	Line perpendicular to a given line l, passing through a given point on l.	•	•	•	•	•	•			
5	Line parallel to given line, through a given point.	•	•	•	•	•	•			
6	Division of a line segment into 2 or 3 equal segments without measuring it.	•	•	•	٠	•	•			
7	Division of a line segment into any number of equal segments, without measuring it.			•			•			
8	Line segment of a given length on a given ray.	•	•	•	•	•	•			
9	Angle of a given number of degrees with a given ray as one arm.		•	•	•	•	•			
10	Triangle, given lengths of 3 sides.		•	•	•	•	•			
11	Triangle, given SAS data.		•	•	•	•	•			
	oment Team – Droft									



C

Synthetic Geometry Guide to Axioms, Theorems and Constructions for all Levels

	Axioms and Theorems				Leaving te Certificate		
	(Supported by 46 definitions, 20 propositions) * proof required for JCHL and LCHL ** proof required for LCHL only	CIC	OL	HL	FL	OL	HL
	Axiom 1: There is exactly one line through any two given points	•	•	•	•	•	•
	Axiom 2: [Ruler Axiom]: The properties of the distance between points.	•	•	•	•	•	•
	Axiom 3: Protractor Axiom (The properties of the degree measure of an angle).	•	•	•	•	•	•
1	Vertically opposite angles are equal in measure.	•	•	•	•	•	•
	Axiom 4: Congruent triangles conditions (SSS, SAS, ASA)	•	•	•	•	•	•
2	In an isosceles triangle the angles opposite the equal sides are equal. Conversely, if two angles are equal, then the triangle is isosceles.	•	•	•	•	•	•
	Axiom 5: Given any line I and a point P, there is exactly one line through P that is parallel to I.	•	•	•	•	•	•
3	If a transversal makes equal alternate angles on two lines then the lines are parallel (and converse).	•	•	•	•	•	•
4*	The angles in any triangle add to 180 [°] .	•	•	•	•	•	•
5	Two lines are parallel if, and only if, for any transversal, the corresponding angles are equal.	•	•	•	•	•	•
6*	Each exterior angle of a triangle is equal to the sum of the interior opposite angles.	•	•	•	•	•	•
7	The angle opposite the greater of two sides is greater than the angles opposite the lesser. Conversely, the side opposite the greater of two angles is greater than the side opposite the lesser angle.					•	•
8	Two sides of a triangle are together greater than the third.					•	•
9*	In a parallelogram, opposite sides are equal, and opposite angles are equal.		•	•	•	•	•
	Corollary 1. A diagonal divides a parallelogram into two congruent triangles.			•			•
10	The diagonals of a parallelogram bisect each other.		•	•	•	•	•
11**	If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.			•		•	•
12**	Let ABC be a triangle. If a line I is parallel to BC and cuts [AB] in the ratio m:n, then it also cuts [AC] in the same ratio.			•		•	•
13**	If two triangles are similar, then their sides are proportional, in order.		•	•	•	•	•
14*	[Theorem of Pythagoras]In a right-angled triangle the square of the hypotenuse is the sum of the squares of the other two sides.		•	•	•	•	•
15	[Converse to Pythagoras]. If the square of one side of a triangle is the sum of the squares of the other two, then the angle opposite the first side is a right angle.		•	•	•	•	•
	Proposition 9 : (RHS). If two right-angled triangles have hypotenuse and another side equal in length respectively, then they are congruent.		•	•	•	•	•
16	For a triangle, base x height does not depend on the choice of base.					•	•

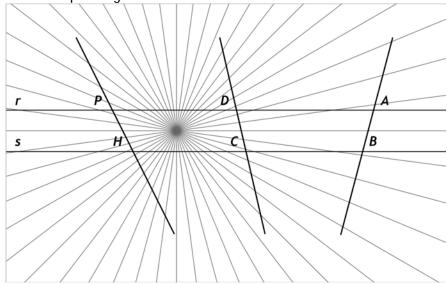
	Definition 38: The area of a triangle is half the base by the height.				•	•
17	A diagonal of a parallelogram bisects the area.				•	•
18	The area of a parallelogram is the base x height.				•	•
19*	The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.		•			•
	Corollary 21: All angles at points of a circle, standing on the same arc are equal		•			•
	Corollary 3: Each angle in a semi-circle is a right angle.	•	•	•	•	•
	Corollary 4 : If the angle standing on a chord [BC] at some point of the circle is a right-angle, then [BC] is a diameter.	•	•	•	•	•
	Corollary 5: If ABCD is a cyclic quadrilateral, then opposite angles sum to 180 .		•			•
20	 (i) Each tangent is perpendicular to the radius that goes to the point of contact. (ii) If P lies on the circle S, and a line I is perpendicular to the radius to P, then I is a tangent to S. 				•	•
	Corollary 6: If two circles intersect at one point only, then the two centres and the point of contact are collinear.				•	•
21	 (i) The perpendicular from the centre to a chord bisects the chord. (ii) The perpendicular bisector of a chord passes through the centre. 				•	•

† The corollaries are numbered as in the appendix; corollary 2 is the first one relating to theorem 9

	Constructions				Leaving Certificate			
	(Supported by 46 definitions, 20 propositions, 5 axioms and 21 theorems)	CIC	OL	HL	FL	OL	HL	
1	Bisector of an angle, using only compass and straight edge.	•	•	•	•	•	•	
2	Perpendicular bisector of a segment, using only compass and straight edge.	•	•	•	•	•	•	
3	Line perpendicular to a given line I, passing through a given point not on I.		•	•			•	
4	Line perpendicular to a given line I, passing through a given point on I.	•	•	•	•	•	•	
5	Line parallel to given line, through a given point.	•	•	•	•	•	•	
6	Division of a line segment into 2 or 3 equal segments without measuring it.	•	•	•	•	•	•	
7	Division of a line segment into any number of equal segments, without measuring it.			•			•	
8	Line segment of a given length on a given ray.	•	•	•	•	•	•	
9	Angle of a given number of degrees with a given ray as one arm.		•	•	•	•	•	
10	Triangle, given lengths of 3 sides.		•	•	•	•	•	
11	Triangle, given SAS data.		•	•	•	•	•	
12	Triangle, given ASA data		•	•	•	•	•	
13	Right-angled triangle, given length of hypotenuse and one other side		•	•	•	•	•	
14	Right-angled triangle, given one side and one of the acute angles.		•	•	•	•	•	
15	Rectangle given side lengths.			•	•	•	•	
16	Circumcentre and circumcircle of a given triangle, using only straight edge and compass.					•	•	
17	Incentre and incircle of a triangle of a given triangle, using only straight edge and compass.					•	•	
18	Angle of 60 ⁿ without using a protractor or set square.				•	•	•	
19	Tangent to a given circle at a given point on it.				•	•	•	
20	Parallelogram, given the length of the sides and the measure of the angles.				•	•	•	
21	Centroid of a triangle.					•	•	
22	Orthocentre of a triangle.						•	

Theorem 5 Activity

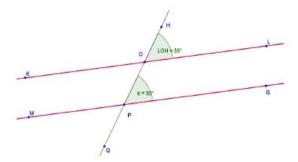
 Are the lines *r* and *s* below parallel?
 r s s Using a protractor measure the angles, A, B, C, D, P and H below. List the equal angles.



3. Are the lines *r* and *s* below parallel?

Student Activity Theorem 5

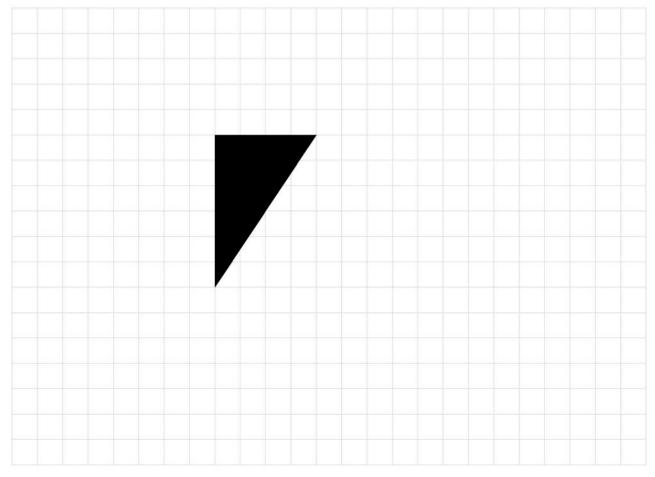
Use in connection with interactive file Theorem 5 on the Student's CD.



1. What do you notice about the measure of the angles LOH and GPO?

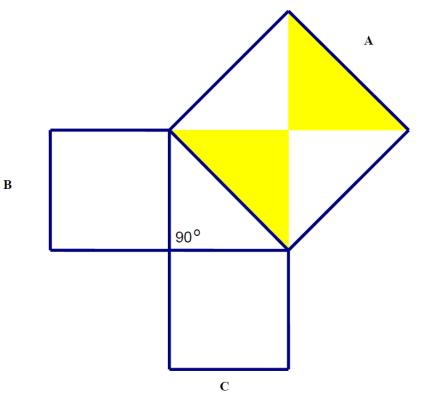
	Drag the point H to make the measure of the angle LOH = 30 ⁰ . Write down the measure of the angle GPO.
	Are the measures of the two angles LOH and GPO equal in measure?
2.	Drag the point H to make the measure of the angle LOH = 100°. What is the measure of the angle GPO?
	Are the measures of the two angles LOH and GPO equal?
3.	The angles LOH and GOP are called CORRESPONDING angles. Drag the point H to various positions. Are these angles LOH and GOP always equal?
4.	Click on Tick Box to show the wording of this theorem. Are the lines <i>a</i> and <i>b</i> parallel?
5.	Name another pair of corresponding angles in the diagram.
	(i) (ii)
	Write down the measure of these angles (i) (ii)
	Are the measures of these angles equal?
6.	If you were told that the lines a and b are parallel what can we say about the measures of the following pairs of angles:
	HOL and OPG
	QPG and POL
	QPM and POK Drag the point H to make the angle OPG equal to 90° and then write down the measures of the following angles.
	(i) KOH
	(ii) MPO
	(iii) QPG

Squared Paper Triangle



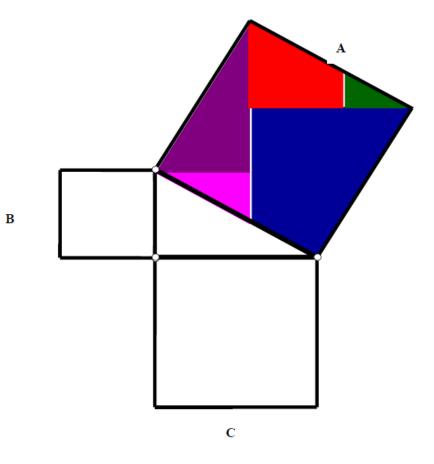
Pythagoras Theorem Cut out 1

Cut out the triangles in square A and fit them into the other squares.



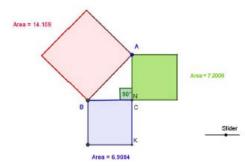
Pythagoras Theorem Cut out 2

Cut out the triangles in square A and fit them into the other squares.



Student Activity Theorem 14

Use in connection with interactive file Theorem 14 on the Student's CD.



1. There are three squares built on the sides of the right angled triangle in the diagram. Write down the areas of the three squares.

Red Square						
Blue Square						
Green Square	Green Square					
Add the area of the Blue Square to the area of the Green Square						
Area of Blue Square + Area of Green Square =						
Does this total Area equal the Area of the red Square?						

2.	Drag the slider to the left. Now write down the areas of the three squares.			
	Red Square			
	Blue Square			
	Green Square			
	Add the area of the Blue Square to the area of the Green Square			
	Area of Blue Square + Area of Green Square =			
	Does this total Area equal the Area of the red Square?			
3.	Drag the slider to the right. Now write down the areas of the three squares.			
	Red Square			
	Blue Square			
	Green Square			
	Add the area of the Blue Square to the area of the Green Square			
	Area of Blue Square + Area of Green Square =			
	Does this total Area equal the Area of the red Square?			
4.	Write down in your own words what conclusion can be drawn from the answers to questions 1, 2 and 3.			
5.	Click on the Tick Box on the interactive file to reveal the wording of this theorem. Did you come to this conclusion?			
6.	If the Area of the Red Square is a^2 , the Area of the Blue Square is b^2 and the Area of the Green Square is c^2 can we conclude that:			
	$a^2 = b^2 + c^2$			
7.	If the Area of the Red Square is a^2 , the Area of the Blue Square is b^2 and the Area of the Green Square is c^2 can we conclude that:			
	$b^2 = a^2 + c^2$			
8.	If the Area of the Red Square is r^2 , the Area of the Blue Square is b^2 and the Area of the Green Square is g^2 can we conclude that:			

 $r^2 = b^2 + g^2$

Student Activity Theorem 6

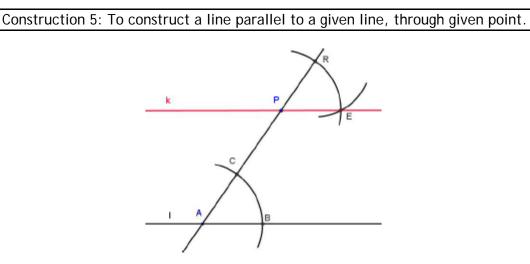
Use in connection with interactive file Theorem 6 on the Student's CD. Give all answers correct to the nearest degree.

	103° A 77°
	E 134.1' 45.9' 57.1' 122.9'
1.	Drag the point A to make the measure of the angle EBA = 130° .
1.	
	What is the measure of the angle BAC?
	What is the measure of the angle BCA? What is the sum of the measures of the angles BAC and BCA?
	Measure of the angle BAC + Measure of BCA =
	Is this sum equal to the measure of the angle EBA?
2.	Drag the point A to make the measure of the angle DCA = 100° .
	What is the measure of the angle CBA?
	What is the measure of the angle CAB? What is the sum of the measures of the angles CBA and CAB?
	Measure of the angle CBA + Measure of CAB =
	Is this sum equal to the measure of the angle DCA?
3.	Drag the point A to make the measure of the angle EBA = 110° .
	What is the measure of the angle ABC?
	What is the measure of the angle ACB? What is the sum of the measures of the angles ABC and ACB?
	Measure of the angle ABC + Measure of ACB =
	Is this sum equal to the measure of the angle FAB?
4.	Drag the point A to make the measure of the angle DCA = 84° .
	What is the measure of the angle CBA?
	What is the measure of the angle CAB? What is the sum of the measures of the angles CBA and CAB?
	Measure of the angle CBA + Measure of CAB =
	Is this sum equal to the measure of the angle DCA?

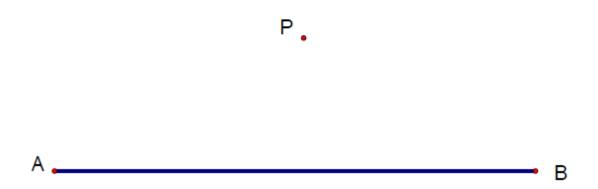
- 5. What conclusion can you deduce from the measurements in Q 1, Q2, Q3, and Q4.
- 6. Click on the Tick Box on the interactive file to reveal the wording of this theorem. Did you come to this conclusion?

Student Activity Construction 5

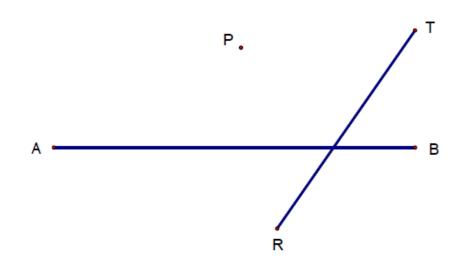
Use in connection with interactive file Construction 6 on the Student's CD.



1. Construct a line through P parallel to [AB].



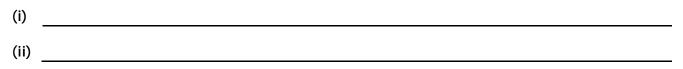
2. Construct a line through P parallel to [AB] and construct a line through P parallel to [RT]. Extend these lines to form a four sided figure.



What do you call the resulting four sided figure? Measure the lengths of the sides of the four sided figure.

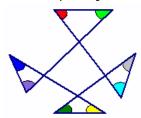
What can you conclude?

Measure the internal angles of the four sided figure What conclusions can you make when you measure these angles.

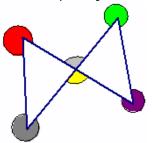


Geometry Questions

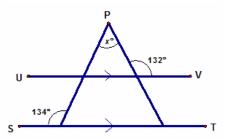
1. In the diagram, what is the sum of the marked angles? Explain your solution.



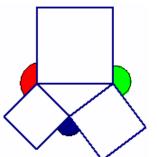
2. In the diagram, what is the sum of the marked angles? Explain your solution.



3. In the diagram, ST is parallel to UV What is the value of *x*?



4. The diagram shows three squares drawn on the sides of a triangle. What is the sum of the three marked angles?



5. State whether or not the following line segments will produce a triangle. Give a reason for each set of lengths.

Lengths	Will these produce a triangle?	Reason
3 cm, 5 cm , 6 cm		
6.2 cm, 2.8 cm , 3.1 cm		
5.4 cm, 7.6 cm , 8.3 cm		
10.9 cm, 6.5 cm , 7.2 cm		
4.7 cm, 8.6 cm , 3.1 cm		