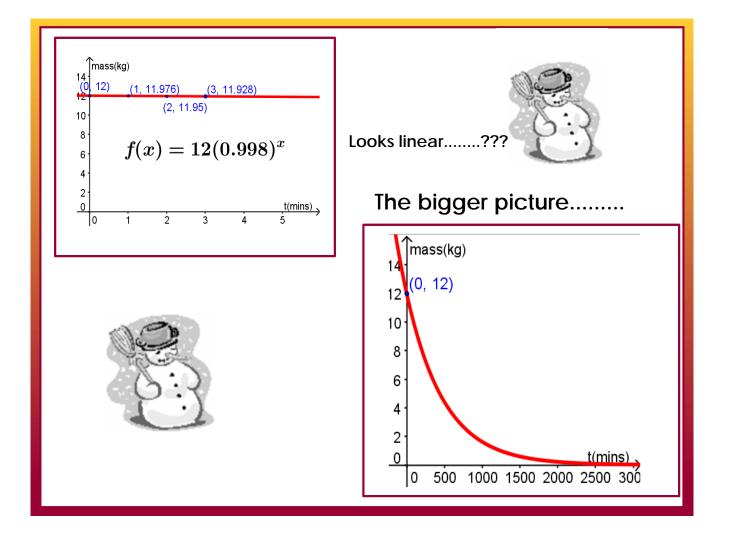

Number & Algebra: Strands 3 & 4

#1
A Relations Approach to Algebra: Linear Functions

#2
A Relations Approach to Algebra: Quadratic, Cubic & Exponential Functions

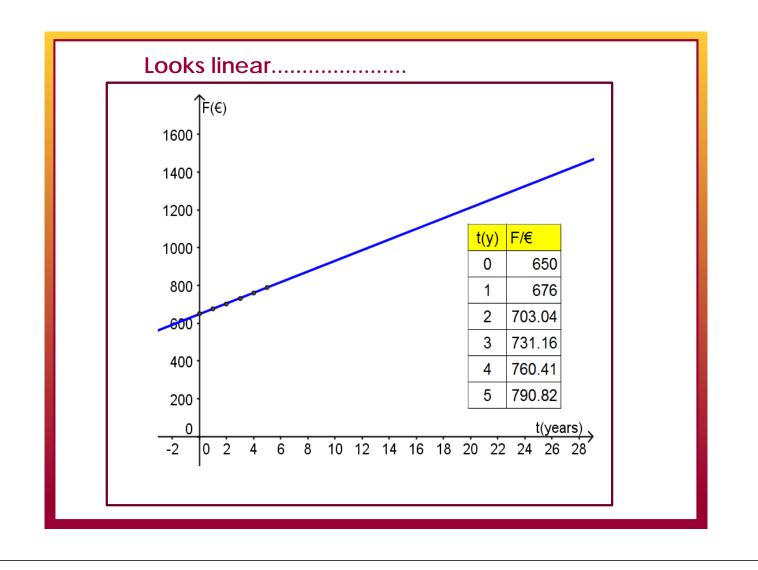
#3
Applications of Sequences & Series

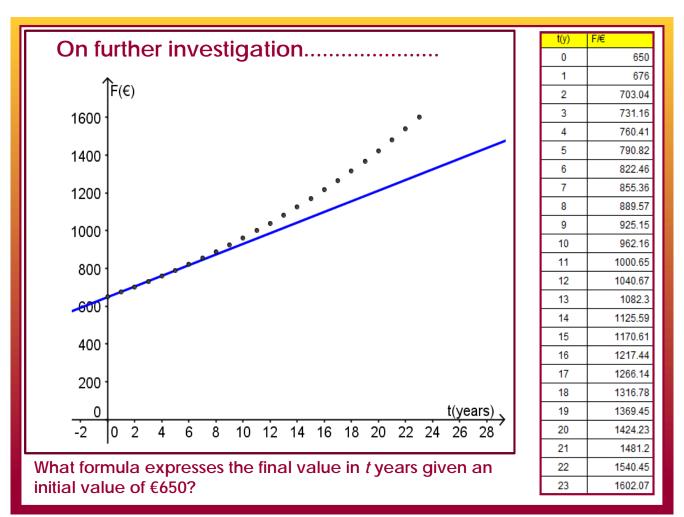
#4
Applications of Sequences & Series

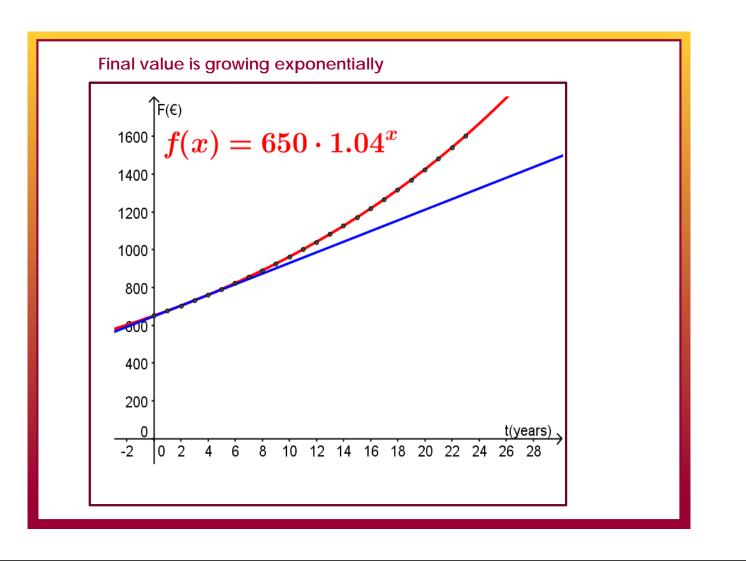

Linking Depreciation and Compounding to Prior Knowledge on Exponential Functions using Tables, Graphs and Formulae

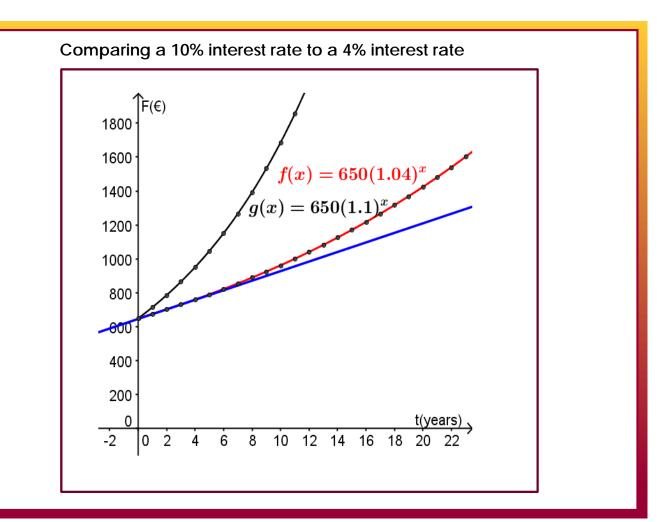
2007 JC HL Q1 (b)

A snowman has a mass of 12 kg.
 It melts at a rate of 0.2% of its mass per minute.
 What will be the mass of the snowman after 3 minutes?
 Give your answer correct to 2 decimal places.


Poorly answered. Common errors: **1.** Ignoring cumulative loss of mass. **2.** Mistake in % or decimal.




 \in 650 is deposited in a fixed interest rate bank account. The amount in the account at the end of each year is shown in the following table.


End of year	1	2	3	4	5
Final value/€	676	703.04	€731.16	760.41	790.82

- (a) Explain whether or not the relationship between final value and time can be modelled by a linear, quadratic or exponential function or by none of these?
- (b) If you plot a graph of final value against time what does the graph look like for this limited range of times?

Applying Rules for Indices

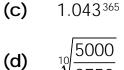
Complete the following table, without the use of a calculator. Leave your answers in index form:

Before multiplying	After multiplying	Before multiplying	After multiplying
1. a ⁷ xa ³		6. 1.02 ³ x 1.02 ³	
2. 8 ³ x 8 ²		7. 1.14 ⁵ x 1.14 ²	
3. 8.2 ⁵ x 8.2 ²		8. 1.06 ⁴ x 1.06	
4. $(6.4)^5 (6.4)^2$		9. (1.08) ⁵ (1.08)	
5. 1.3 ² x 1.3 ⁵		10. 1.07 x 1.07 ⁵	

Eva	Evaluate Using the Calculator (prior knowledge for method 2)		
1.	7 ⁴	8.	10(3) ⁴
2.	4.5 ⁴	9.	100(6) ³
3.	1.8 ⁵	10.	1000(2.5) ³
4.	1.06 ⁶	11.	300(1.03) ⁶
5.	1.325 ⁵	12.	2000(1.025) ⁵
6.	$\left(\frac{3}{2}\right)^7$	13.	250(1.16) ⁴
0.	(2)	14.	400(1.08) ⁴
7.	$\left(\frac{1}{2}\right)^4$		

Final Value Using Compounding (two methods) Method 2 Method 1 Value at end of Value at end of Value of the gift (P) €5000 year 1 year 1 €5000 × **1.04** Interest for the 1^{st} year (I_1) €5000 × 1.04 €200 (4% of €5 000) = €5200 F_1 = Final value (end of year 1) €5200 Value at end of Value at end of Interest for the 2^{nd} year (I_2) €208 year 2 year 2 F_2 = Final Value (end of year 2) €5200 × **1.04** €5000 × **1.04**² €5408 = €5408 Check with a calculator Interest for the 3^{rd} year (I_3) €216.32 F_3 = Final Value (end of year 3) €5624.32 Value at end of Value at end of year 3 year 2 0.04 = i€5408 × **1.04** €5000 × **1.04**³ Write an expression = €5624.32 1.04 = 1 + ifor the final value F Check with a calculator in terms of P, i and t. Express this as a number and use it to calculate F_1 What % of *P* is F_1 ? 1.04 104% What % of F_1 is F_2 ? Express this as a number and use it to calculate F_2 1.04 104% What % of F_2 is F_3 ? 104% 1.04 Express this as a number and use it to calculate F_3

Finding Roots


Revision using the Calculator

 $2 \times 2 \times 2 \times 2 = 32$, therefore the 5th root of 32 is 2.

Verify this using the root key $\left[\sqrt[b]{a}\right]$

Evalaute the following:

(a)	$625^{\frac{1}{4}}$
(b)	¹² ∕1.043
(-)	$1 0 40^{-1}$

Finding Number of Years (or other time periods) LCHL

Fiona has put €5000 into a savings account at 7% AER. She needs €10 000 in order to build an extension to her house. How many years will it take for Fiona to reach her target of €10 000 ? Give your answer correct to one decimal place.

Р	i	(1+ <i>i</i>)	t	F
€5000	0.07	1.07		€10000

N.B. Prior knowledge of logarithms required

 $10000 = 5000(1.07)^{t}$ $2 = (1.07)^{t}$ $\log_{1.07} 2 = t$ t = 10.24 years

Reducing Balance

Jillian and Noel are each going to buy a games console. It costs €500 and they are getting a loan from the credit union . Jillian says "I am making a lot of money at the moment so I can afford to pay €100 per month." Noel says that he can only afford €80 per month. The credit union is charging them a monthly interest rate of 1% to be paid at the end of each month. Find their outstanding balances at the end of each month.

(a) A loan is taken out

- (b) After 1 month interest is added on
- (c) The person then makes his/her monthly repayment. This process is then repeated until the loan is fully paid off.

Reducing Balance

Compare the total interest paid by Jillian and Noel.

Total interest J = €15.55 Total interest N = €18.98

Compare the time taken by Jillian and Noel to pay off the Ioan.

 $t_J = 6$ months $t_N = 7$ months

0.00
5.00
5.00
0.00
5.00
4.05
9.05

Payment 2	€100.00
Balance 2	€309.05
Interest 3	3.0905
Interest 3 Total	3.0905 €312.14

r ayment o	0100.00
Balance 3	€212.14
Interest 4	2.121405
Total	€214.26
Payment 4	€100.00

1.1426

€115.40

€100.00 €15.40

€15.56

€15.56 €0.00

0.154045241

Balance 4

Interest 5

Balance 5 Interest 6

Balance 6

Total Payment 5

Total Payment <u>6</u>

4.05	Interest 2
€409.05	Total
€100.00	Payment 2
€309.05	Balance 2
3.0905	Interest 3
€312.14	Total
€100.00	Payment 3
€212.14	Balance 3
2.121405	Interest 4
€214.26	Total
€100.00	Payment 4
€114.26	Balance 4
4261905	Interest 5

Noel Initial loan

Interest 1

Payment 1

Balance 1

Total

€500.00

€5.00 €505.00

€80.00

€425.00

€429.25

€80.00 €349.25

3.4925

€352.74

€80.00

€272.74 2.727425

€275.47

€80.00

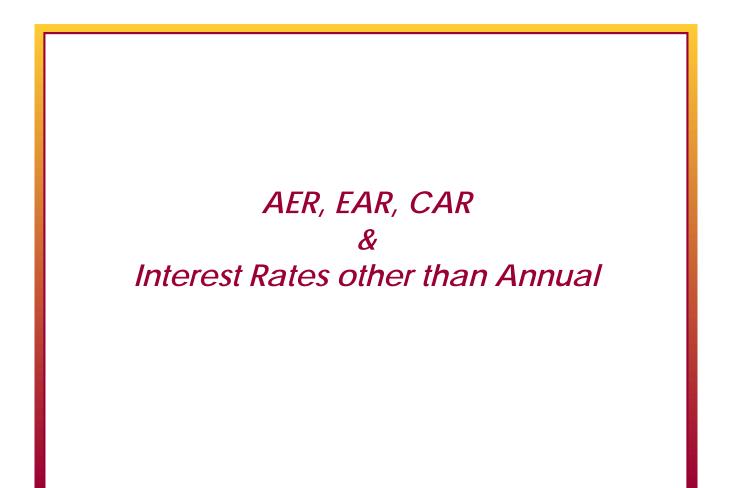
€195.47

4.25

Interest 5	1.95469925
Total	€197.42
Payment 5	€80.00
Balance 5	€117.42
-	-

1.174246243
€118.60
€80.00
€38.60

Interest 7	0.385988705
Total	€38.98
Payment 7	€38.98
Balance 7	€0.00


Depreciation

A company buys a new lorry for €50 000. After 4 years it needs to sell the lorry. The value of the lorry reduces by 15% each year. What is the value of the lorry after 4 years?

Depreciation

Method 1		Method 2	
Original Value of Lorry P	€50000	Value at end of year 1	Value at end of year 1
Depreciation in year 1 =€50000(0.15)	€7500	€50000 × 0.85 = €42500	= €50000 × 0.85
$F_1 =$ Final value (end of year 1)	€42500		
Depreciation in year 2	€6375	Value at end of year 2	Value at end of year 2
F_2 = Final Value (end of year 2)	€36125	€42500 × 0.85 ⁼	= €50000 × 0.85 ²
Depreciation in year 3	€5418.75	= €36125	Check with a calculator
F_3 =Final Value (end of year 3)	€30706.25	Value at end of year 3	Value at end of year 3
0.04 = i 1.04 = 1+i Write an expression for the final value F in terms of P, i and t.		€536125 × 0.85 = €30706.25	= €50000 × 0.85 ³
			Check with a calculator
What % of <i>P</i> is <i>F</i> ₁ ? 85%	Express this as a number and use it to calculate F_1 0.85		
What % of F_1 is F_2 ? 85%	Express this as a number and use it to calculate $F_2 = 0.85$		
What % of F_2 is F_3 ? 85%	Express this as a number and use it to calculate F_3 0.85		

Savings and Investments

AER (annual equivalent/effective rate) tells you what interest you will earn annually, which depends on how often interest is added.

- ✓ Used for savings and investments
- It may or may not include charges;
- Allows investors to make <u>comparisons between savings accounts</u> which pay interest at different intervals
- ✓ Takes into consideration the effect of compounding interest

The financial regulator's office considers the terms AER/EAR and CAR all to be equivalent. The term CAR is approved for use in relation to tracker bonds – for other investment products the regulator considers the acronym AER or EAR should be used.

AER

Leaving Certificate 2010 Sample Paper 1 Foundation Level Q2

A sum of €5000 is invested in an eight-year government bond with an annual equivalent rate **(AER)** of 6%.

Find the value of the investment when it matures in eight years' time.

 $F = P(1+0.06)^8 = \in 7969.24$

Leaving Certificate 2010 Sample Paper 1 Ordinary Level Q2

- (a) A sum of €5000 is invested in an eight-year government bond with an annual equivalent rate (AER) of 6%. Find the value of the investment when it matures in eight years' time.
- (b) A different investment bond gives 20% interest after 8 years. Calculate the AER for this bond.

$$6000 = 5000(1+i)^8 \Longrightarrow (1+i) = 1.2^{\frac{1}{8}} = 1.02305 \Longrightarrow i = 0.02305$$

AER = 2.305%

Unwrap the Terminology

We Really do Want your Money

Justify that that 5.25% fixed for 15 months is the same as 4.18% AER