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Introduction 
To Teachers 
Algebra Through the Lens of Functions Part 1 and 2 have been designed by the Maths Development 
Team for use by teachers of mathematics. Algebra Through the Lens of Functions Part 1 of 2 should 
be used prior to engaging with Part 2.  Both part 1 and part 2 treat the art of teaching algebra 
through the lens of functions through a series of units. The material contained in the document is 
suitable for all levels and abilities but is particularly suited to Junior Certificate Higher Level. It 
includes a discussion of activities, tasks and the formation of connections suitable for classroom use. 
When necessary, required subject matter content is covered as well. 
Both Part 1 and 2 were written in response to the many teachers who attended continuing 
professional development courses given by the authors and were unable to find material in a single 
convenient source.  The authors collaborated with the Maths Inspectorate of the Department of 
Education & Skills to provide a collection of activities and strategies for Junior Certificate 
mathematics classes.  
 

Activity Book 
Visualising Patterns for Linear Relationships and Visualising Patterns for Quadratic Relationships are 
activity workbooks which can be used to supplement the text in Part 1 and Part 2 respectively.  
Visualising Patterns for Quadratic Relationships contains fourteen patterns that may be used to 
extend the ideas presented by the corresponding units in this text.   
Visualising Patterns for Quadratic Relationships can be downloaded from here.  Larger versions of 
the images are available in PDF form here and as an interactive PowerPoint here. 
 

Organisation, Format & Special Features of the Units 
Linear Relationships  
Units 1 to 10 are contained in Algebra Through the Lens of Functions Part 1 of 2. This resource can be 
found here. 
 
Quadratic Relationships 
Units 11 to 22, in this document: Algebra Through the Lens of Functions Part 1 of 2, deal with 
quadratic relationships. 
Unit 11 includes forming quadratic expressions from visual patterns, an approach similar to that 
adopted in Algebra Through the Lens of Functions Part 1 of 2.  This Unit also allows for the skills of 
simplifying expressions into their equivalent forms and substitution into expressions to be explored.  
More importantly, two questions that will involve the need to generalise are introduced. These 
questions are intended to motivate the content of the next few Units and consolidate the notion 
that the use of algebra generally is the more efficient strategy, when dealing with increasingly 
complex problems. 
In Unit 12, geometric shapes are utilised in visualising like and unlike terms in quadratic and linear 
expressions while simplifying the sum and difference of like terms and simple factors by utilising 
rectangular shapes are dealt with in Unit 13.  Unit 14 deals with multiplying expressions and 
factorising by grouping and helps students recognise that one advantage of factorising by grouping is 
that the area of rectangular shapes can be expressed concisely.  Unit 15 deals with algebraic 
multiplication and factorising quadratic expressions.  Complementary methods for factorising 
expressions that can be done in parallel are also explored.  Unit 15 engages the students in analysing 
the solutions of some multiplication questions in order to identify any relationship between the 
numbers in the factors and the numbers in the product.  In Unit 16 students will see that dividing 
algebraic expressions is a skill that can be used when the area of a rectangle and the length of one 
side are known and the length of the second side is required.  Unit 17 introduces the idea that when 
the product of two numbers is zero then one (or both) of the numbers must be zero.  When this is 
linked to the earlier work on factorising quadratic expressions the students access the skills of 

http://www.projectmaths.ie/documents/PDF/QuadraticPatternsWorkbook.pdf
http://www.projectmaths.ie/documents/PDF/QuadraticPatternPack.pdf
http://www.projectmaths.ie/documents/powerpoint/QuadraticPatternsPackInteractive.ppsx
http://www.projectmaths.ie/documents/pdf/AlgebraThroughTheLensOfFunctions.pdf


2 
 

solving quadratic equations where the quadratic can be resolved into its factors.  The students solve 
one quadratic equation in Unit 18 and encounter many more in Unit 19.  In Unit 20 the need for a 

method other than factorisation is shown and the quadratic formula, 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, is introduced 

as one means of solving all quadratic equations.  Transformations of quadratic functions and the 
information that can be gleaned when quadratic functions are presented in different forms is 
explored in Unit 21.  This idea is continued in Unit 22 where the difference of two squares is 
explored from a number of viewpoints.   
 
Cubic Expressions, Exponential Relationships and some key skills in Algebra 
Cubic expressions are dealt with in Unit 23 and exponential relationships appear in Unit 24.  Any 
remaining work that needs to be done in rearranging formulae, algebraic fractions or factorising by 
grouping is contained in Units 26, 27 and 28. 
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General Overview 
The central idea in this document is that it might be better for students to understand why a skill is 
required before learning it.  In addition to endeavouring to make functions the focus of the 
document, multiple representations are used throughout and some links back to what can be done 
when students are studying Number to help students understand algebraic concepts are made.  
Therefore, the learning outcomes of both Strands 4 and 5 are included in this document.  The 
intention is that by the time students are “finished” their work on Algebra that they are also 
“finished” their work on Functions.  The remainder of this overview looks at (a) the flow of some 
Units in this document, (b) the rationale for the positioning of some algebraic skills (c) an outline of 
the Units and (d) key features of functions. 
 

(a) The Flow of Some Units in this Document 
Broadly speaking, the flow below is used in many Units in this document to show students the need 
for the algebraic skills they are about to learn prior to learning the skill.  Throughout the document 
multiple solution strategies are used.  In many cases students can find the answer to various 
questions by analysing a table or by interpreting a graph before engaging with the problem using an 
algebraic method.  This means that the algebraic method should make sense to the students as they 
already know what the answer should be.  In many cases too, the need for an algebraic method is 
obvious as other methods become be too tedious when the numbers are large or prove inaccurate 
when the answer is not a whole number.  Students can bring their own thinking to many of the 
problems before they are introduced to the formal algebraic approach. By doing so, the students get 
a greater sense of what they are doing and why they are doing it, can recognise the value of 
thoughtful engagement with problem solving and appreciate that algebraic techniques offer them 
incredibly powerful ways of tackling problems.  Students should then have a greater appreciation of 
where algebra fits into mathematics as a whole and how understanding algebraic relationships and 
techniques is worthwhile. 
 
1. Students engage with a problem 

Students engage with a problem through (i) whole class discussion led by teacher questioning, (ii) 
working in groups, (iii) individual work or (iv) a combination of some or all of the above.  Following 
this, the students implement strategies such as drawing diagrams, analysing a table, trial and 
improvement or interpreting a graph.  The effectiveness of these strategies are then compared by 
the students through discussion. 
 
2. Students see the need for a new strategy 
The students engage with a follow-on problem where the limitations of earlier strategies become 
apparent and the need for a new strategy is obvious. 
 
3. Students are guided by the teacher to learn the new strategy   
Students are guided by the teacher to learn the new strategy.  In this document the new strategy 
will always incorporate algebraic solutions. 
 
4. Students compare the new strategy with the previous strategies 
Students compare the new strategy with the previous ones to see the advantages of the algebraic 
approach and to recognise that algebraic solutions can be checked by using other methods. 
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(b) Rationale for the position of some algebraic skills 
It is acknowledged that students may have prior knowledge (of using the laws of indices when 
multiplying numbers with a common base or using the distributive law when working in number, for 
example), but it is envisaged that moving from expanding expressions of the type 3(𝑥 + 2) to more 
complex examples like 𝑥(𝑥 + 2), (𝑥 + 2)(𝑥 + 3) or (𝑥 + 2)(𝑥2 + 3𝑥 + 4) is delayed until the need 
for such expansions is obvious.  For this reason, work on linear functions is treated separately from 
that on quadratic and cubic functions.  This also brings the additional benefit that when students 
encounter (𝑥 + 2)(𝑥 + 3) for the first time they will engage with it from a number of perspectives 
rather than merely as an entity demanding the application of some algebraic skill.  
 
Once a skill is learned in one Unit it can then be used in all subsequent Units.  For example, 
substitution is learned in the “Dots Activity” in Unit 1 of Algebra Through the Lens of Functions Part 1 
of 2 and while it might not be explicit in the Units that follow it should be seen as a key skill in 
developing understanding in those Units too.  
 
 

(c) Key Features of Functions 
Throughout the document the key features of functions are referred to.  These features can be used 
when analysing functions so students can use the same criteria for analysing the different functions 
they encounter as they progress from first year through to sixth year. 
The key features of functions are: 
1. The domain and range  
2. Where the graph of the function meets the axes. 
3. Things that remain constant and those that vary in the function, 
4. The behaviour of the graph of the function  
5. The rate of change of the function   
Note: Average rates of change can be used to begin the discussion about how rates of change can be 
positive, negative or zero and how this can be used to decide if the function is increasing, decreasing 
or neither.  This work can be continued at senior cycle when the slope of the tangent to the function 
is dealt with. 
 
 
 

How to use this document 
Throughout the document there are hyperlinks to useful resources, for example, booklets of visual 
patterns, matching activities, Teacher Resource Booklets from the various Project Maths workshops 
and Teaching and Learning Plans.  Clicking on a hyperlink will bring you to the resource. 
The document also contains boxes entitled “Number Work” which provide ideas that should be used 
when students are studying number, per se, but that can also help students see properties of 
number that are important for algebra.  They are included in this document so that they can be 
revisited when students encounter the related concept in algebra. 
Each Unit contains a number of Sample Problems that can be used with students.  



6 
 

Unit 11: A Quadratic Problem – Forming a Quadratic Expression and Equation 
and recognising that additional skills are required to Solve the Equation  
In this Unit students will: 

 use visual patterns to construct a quadratic relationship 

 use a table to solve quadratic equations 

 use a graph to solve quadratic equations 

 use trial and improvement to solve quadratic equations 

 appreciate that they may not yet have the algebraic skills to solve quadratic equations 
algebraically 

 
There are two main goals for this Unit:   

1. To enable students to use visual patterns to construct quadratic relationships.  
2. To motivate the need for sufficient algebraic skills to solve quadratic equations.   

 
Note: At this stage students will have done no work on 𝑥2 prior to this, other than when doing 
indices and looking at how to write numbers as a product of its factors. 

Number Work 
Understanding factors, prime, composite and square numbers will help students with this activity 
and ones that occur later; for example, simple factorising, factorising by grouping and factorising 
quadratics. 
By building all the possible rectangles from whole numbers of unit squares (for example, 2, 3, 4, 5, 6, 
7, etc.) students will see that some numbers only have a very limited choice in how a rectangle can 
be built, for example, 2, 3, 5, 7 etc.  (prime numbers). 

 
Some numbers have more choice in how a rectangle can be built, for example the set of composite 
numbers {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .}.  
A subset of the set of composite numbers have the property that they can be arranged into a square. 
This is the set of square numbers {4, 9, 16, 25, . . .}.  (square numbers).  

 
A discussion can be had about how the number 6 can be represented as 3 groups of 2 and also as 2 
groups of 3 to illustrate the commutative law. 
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For many questions involving visual patterns a variety of equivalent expressions can be found for the 
pattern.  Colour is used to give hints as to various ways of seeing the pattern. 
“Next, Near, Far, Any” (see Unit 1 of Algebra Through the Lens of Functions Part 1 of 2) can be used 
to help students to form the relationship between the stage number and the number of squares.  
Once even one expression has been formed, substitution can be practiced, for example, how many 
squares are in the 10th stage?  
 
Notes:  

1. Four different sample problems are shown below.  The minimum students should deal with 
here is Sample Problem 1 and Sample Problem 2.  Sample Problem 2 will be analysed in 
detail in this Unit.  It is advised that Sample Problems 3 and 4 be analysed as it will help to 
deepen students’ understanding of how algebraic expressions are constructed.  The analysis 
might be deferred until the students have learnt some additional skills and concepts, 
including solving quadratic equations.   

2. A Student Workbook: Visualising Patterns for Quadratic Relationships is available here.  
Larger versions of the images are available in PDF form here and as an interactive 
PowerPoint here. 

3. If students haven’t yet covered quadratic expressions, they will need help to move from 
expressing 𝑥(𝑥) to its equivalent form of 𝑥2. 

 
Sample Problem 1 

Describe the relationship between the stage number and the number of squares 

  
𝑥(𝑥 + 1) can be seen in the first diagram as the height is the stage number and the width is one 
more than the stage number.  Questioning can be used to help students see how to express the 
height, width, and area of each stage in terms of the stage number.   
Questioning can be used to help students.  Such questions might include: 
What is the relationship between the stage number and the height of each stage? 
What is the relationship between the stage number and the width of each stage? 
 
The colour in the second diagram makes it easier to see 𝑥(𝑥 + 1) in its equivalent form of 𝑥2 + 𝑥 
The blue part contains 𝑥2 squares.   
The green part contains 𝑥 squares. 
Questioning can be used to help students see each part.  
What is the relationship between the stage number and the number of blue squares in each stage? 
What is the relationship between the stage number and the number of green squares in each stage? 
 
  

http://www.projectmaths.ie/documents/PDF/QuadraticPatternsWorkbook.pdf
http://www.projectmaths.ie/documents/PDF/QuadraticPatternPack.pdf
http://www.projectmaths.ie/documents/powerpoint/QuadraticPatternsPackInteractive.ppsx
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Sample Problem 2 

Describe the relationship between the stage number and the number of squares 

  
 
(𝑥 + 2)(𝑥 + 3) can be seen in the first diagram as the height is always two more than the stage 
number and the width is always three more than the stage number.   
Questioning can be used to help students see each dimension. 
What is the relationship between the stage number and the height of the rectangle in each stage? 
What is the relationship between the stage number and the width of the rectangle in each stage? 
 
The colour in the second diagram makes it easier to see the total number of squares is the sum of a 
variable squared, plus five times a variable and a constant i.e. 𝑥2 + 5𝑥 + 6.   
The blue part has 𝑥2 squares. 
The green parts contain 5𝑥 squares.   
The yellow part contains 6 squares. 
Questioning can be used to help students see each individual area within each stage.  Such questions 
might include: 
How many yellow squares are in each stage?  
What is the relationship between the stage number and the number of green squares in each stage? 
What is the relationship between the stage number and the number of blue squares in each stage? 
 
Sample Problem 3 

Describe the relationship between the stage number and the number of squares 

 

 
 
In the following commentary the variable 𝑥 refers to the stage number and: 
The colour in the diagram makes it easier to see that the area of the rectangles can be expressed as 
2𝑥2 + 7𝑥 + 6.   
The area in blue, in each stage has an area that can be expressed as 2𝑥2.   
The green parts always contains 7𝑥 squares.   
The yellow part always contains 6 squares. 
Questioning can be used to help students recognise the link between the stage number and the area 
of each coloured part.  Such questions might include: 
How many yellow squares are contained in each stage?  
What is the relationship between the stage number and the number of green squares in each stage? 
What is the relationship between the stage number and the number of blue squares in each stage? 
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Sample Problem 4 

Describe the relationship between the stage number and the number of shaded squares 

 
 
In the following commentary the variable 𝑥 refers to the stage number and: 
The colour in the diagram makes it easier to see that the number of shaded squares in each stage 
can be expressed as 2𝑥2 + 5𝑥 − 3.   
The number of orange squares in each stage can be expressed as 2𝑥2.   
The remaining section of each stage (including the cutaway part) contains 5𝑥 squares.   
The cutaway part has 3 squares. 
The total number of shaded squares in each stage is 2𝑥2 + 5𝑥 − 3.   
Questioning can be used to help students recognise the link between the stage number and the 
number of squares in of each coloured part.  Such questions might include: 
What is the relationship between the stage number and the number of orange squares in each 
stage? 
What is the relationship between the stage number and the number of blue or white squares in each 
stage? 
How many white squares are contained in each stage? How many squares are cutaway in each 
stage?  
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The remaining part of this Unit illustrates the need to incorporate traditional algebraic 
skills in solving quadratic equations. 

Describe the relationship between the stage number and the number of squares 

  
 
After the students form expressions they can be given a partially filled in table.  Students could 
construct the table of points themselves but this partially filled in table will be central to some later 
Units so it is seen as worthwhile to scaffold their work here.  There is no need for students to fill in 
the blank rows near the top of the table at this stage as this will be dealt with in Unit 18. 
The students should then graph the points (1, 12), (2, 20), (3, 30) and (4, 42) on squared paper where 
the 𝑥-axis of the graph should go from –9 to 4 and the 𝑦-axis should go from –5 to 45.  Other points 
will be plotted on this graph in Unit 18.  
 

Stage 
Number 

𝒙 

(𝒙 + 𝟐)(𝒙 + 𝟑) 
Number 

of 
Squares 

Rate of 
Change 
of the 

Outputs 

Change 
of the 

Change 
of the 

Outputs 

     
 
 
 
 
 
 
 
 
 
 

+8 
+10 
+12 

 
    

   

   

   

   

   

   

   

   

1 3(4) 12 

2 4(5) 20 

3 5(6) 30 

4 6(7) 42 

 
The table can be used to show that the relationship is not linear.  A straight-edge can be used to 
show that the points plotted on the graph are not collinear.  
We will look at the change of the change in Unit 19.   
***The next two questions will be used as motivation for the content of next few Units:*** 
(i) Which stage has 42 squares?  
(ii) Which stage has 156 squares?   
 
Question (i) could be answered using many methods.  Four are outlined below: 

 Sketching possible rectangles where one side is one unit longer than the other and seeing 
which one has 42 squares 

 Trial and improvement using either (𝑥 + 2)(𝑥 + 3) or 𝑥2 + 5𝑥 + 6 

 Reading the table to find which stage number has an output of 42 squares 

 Interpreting the graph to see what input is required for an output of 42. 
Question (ii) can be solved using similar methods to question (i).  Sketching the rectangles would be 
inefficient.  Trial and improvement could be a better strategy.  Continuing the table would take a 
long time.  Extending a graph to have an output of 156 would be difficult. 
 

 

http://www.projectmaths.ie/documents/pdf/ActivitySheetForFormingAQuadraticExpressionAndSolvingAQuadraticEquation.pdf
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Analysing the available strategies for question (ii) could lead students to see that maybe there is a 
need for a different strategy.  It could be said to students that using algebra formally could help with 
solving this problem and also that they will have to learn a few skills before they are able utilise 
algebraic skills to solve these problems. 
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Unit 12: Quadratic Expressions in Multiple Representations 
In this Unit students will: 

 make connections between any two representations (Words, Symbols, Area) of a given 
expression (Linear or Quadratic) 

 draw an area representation when given a quadratic expression expressed in words or 
symbols 

 visualise like and unlike terms 

 visualise the distributive law 

 use letters to represent quantities that are variable 

 visualise some transformational activities e.g. collecting like terms and expanding 

 understand if two algebraic expressions are equivalent or not  
 
There are two central activities to this Unit: A. Matching and B. Drawing.  The activities aim to help 
students visualise the distributive law for algebraic expressions, like and unlike terms, and 
equivalent expressions.  
 
A. Matching 
This extends the previous matching activity by including quadratic expressions.  This activity focuses 
on just three of the representations (Words, Symbols and Area).  The activity could be used again at 
a later stage with a Table and Graph.  In order to make this activity challenging for more able 
students, solutions that include fractions are also included.  The matching activity below can be 
found here. 

A1 E6       3𝑛 + 4 
 

W3     Multiply 𝑛 by three, then add 4. 

  

A2 E5          9𝑛2 W2     Multiply 𝑛 by 3, then square the answer. 

 E11       (3𝑛)2  

A3 
 

E10       
𝑛

2
+ 6 W8     Divide 𝑛 by two, then add 6. 

   

A4 E1      2(𝑛 + 3) W4     Multiply 𝑛 by two, then add 6. 

E8       2𝑛 + 6 W9     Add three to 𝑛, then multiply by two. 

 
A5 
 

E2         
𝑛+6

2
 W7     Add six to 𝑛, then divide by two. 

 W10   Add six to 𝑛, then multiply by a half. 

A6 
 

E4  𝑛2 + 12𝑛 +
36 

W6     Add six to 𝑛, then square the answer. 

E9       (𝑛 + 6)2  

A7 E7        𝑛2 + 6 W1     Square 𝑛, then add six. 

  

A8 E3           𝑛2 W5     Square 𝑛. 

   

  

http://www.projectmaths.ie/documents/pdf/MatchingActivityLinearAndQuadraticExpressions.pdf
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B. Drawing 
A similar activity to this was used in Workshop 5.   

Draw the following arrays: 𝒙, 𝒚, 𝟐𝒙, 𝟐𝒚, 𝒙𝟐, 𝟒𝒙𝟐, 𝟐𝒙 + 𝟐𝒚, 𝟐(𝒙 + 𝒚), 𝒙(𝒙 + 𝟒), 𝒙𝟐 + 𝟒𝒙 where 𝒙 ≠
𝒚. 
 

  

 
Notes:  

1. Using squared paper makes this activity much easier. 
2. Prompting students to see 𝑥 as 1𝑥 or +1𝑥 and 𝑦 as 1𝑦 or +1𝑦 will help some students with 

this activity. 
3. 4𝑥2 could be represented as a row of four squares each with side length 𝑥 or one square 

with a side length 2𝑥 i.e. (2𝑥)2 = 4𝑥2. 
4. 𝑥2 will take the shape of a square.  2𝑥 will take the shape of an oblong rectangle unless 𝑥 =

2. 
5. An interesting discussion point will arise if some students draw 𝑥 as two boxes across; the 

area of 𝑥2 will be equal to the area of 2𝑥. 𝑥2 = 2𝑥 when 𝑥 = 0 or 𝑥 = 2. For all other values 
of 𝑥 it should be clear to students that 𝑥2 ≠ 2𝑥.  

A table can be used to demonstrate that 𝑥2 = 2𝑥 for only two values of 𝑥. 
 

𝑥 2𝑥 𝑥2 
0 0 0 

1 2 1 

2 4 4 

3 6 9 

4 8 16 

5 10 25 
 

If it was thought that students could understand a 
quadratic graph then graphs of 𝑓(𝑥) = 2𝑥 and 
𝑔(𝑥) = 𝑥2 could be drawn.  The functions will have 
common values when 𝑥 = 0 and when 𝑥 = 2.  
 
 
Students will not know at this stage how to solve 
for 𝑥 in the equation 𝑥2 = 2𝑥. 
 

 

  

http://www.projectmaths.ie/workshops/workshop5/TeacherResourceBooklet.pdf
http://www.projectmaths.ie/documents/pdf/ArrayRepresentationLinearAndQuadratic.pdf
http://www.projectmaths.ie/documents/pdf/ArrayRepresentationLinearAndQuadratic.pdf
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Unit 13: Simplifying the Sum and Difference of Like Terms and Simple 
Factorising using the Areas of Rectangular Shapes 
In this Unit students will: 

 visualise the sum the sum and difference of like terms 

 simplify the sum and difference of like terms  

 simplify expressions of the form: 
o  (𝑎𝑥 + 𝑏𝑦 + 𝑐) ± ⋯ ± (𝑑𝑥 + 𝑒𝑦 + 𝑓)  
o  (𝑎𝑥2 + 𝑏𝑥 + 𝑐) ± ⋯ ± (𝑑𝑥2 + 𝑒𝑥 + 𝑓)  
o  𝑎(𝑏𝑥 + 𝑐𝑦 + 𝑑) + ⋯ + 𝑒(𝑓𝑥 + 𝑔𝑦 + ℎ) 
o  𝑎(𝑏𝑥2 + 𝑐𝑥 + 𝑑) 

 
This continues the work of the previous Unit where students look at how the dimensions and areas 
of rectangular shapes can be expressed, for example, 𝑥(𝑥 + 4) = 𝑥2 + 4𝑥, 𝑥(𝑥), 𝑥(2𝑥), 𝑥(2𝑥 + 1) 
etc. 
While the areas of shapes can be added and subtracted and composed and decomposed, it is 
recommended that when simplifying the expressions bulleted immediately above, an algebraic 
approach rather than one involving the area model is used.  
 

Unit 14: Multiplying Expressions and Factorising by Grouping to Express the 
Areas of Rectangular Shapes Concisely 
In this Unit students will: 

 multiply expressions to form quadratic expressions  

 appreciate the efficiency of expressing the area of rectangles in factored form 

 factorise by grouping to express the area of rectangles concisely 
 
This Unit is based on the some matching activities from the Workshop 5 Teacher Resource Booklet 
and includes work with area diagrams that contain a number of variables.  Expressing the areas in 
equivalent forms should engage students in factorising expressions. 

The area of the diagram opposite is 𝑝𝑟 + 𝑞𝑟 + 𝑝𝑠 + 𝑞𝑠 (adding the four parts).  It 
can also be expressed as (𝑝 + 𝑞)(𝑟 + 𝑠) (length by breadth).   
𝑟(𝑝 + 𝑞) + 𝑠(𝑝 + 𝑞) (top plus bottom) and 𝑝(𝑟 + 𝑠) + 𝑞(𝑟 + 𝑠) (left plus right) 
are other possible equivalent expressions.     
 
 
 
 
 

Note: Students have already seen how to write 6𝑥 + 3 in equivalent form as 3(2𝑥 + 1) with the aid 
of a diagram. The use of diagrams may also assist students in recognising  𝑟(𝑝 + 𝑞) + 𝑠(𝑝 + 𝑞) as an 
intermediate step in factorising by grouping.  
Since the diagram above is in the shape of a rectangle it should be possible to express its area as the 
product two factors i.e. length by breadth.  Some students will be able to see the answers in 
factored form very easily.  However, all students need to experience the process of rewriting 𝑝𝑟 +
𝑞𝑟 + 𝑝𝑠 + 𝑞𝑠 as (𝑝 + 𝑞)(𝑟 + 𝑠).  Factorising results in the area of a rectangle being expressed 
concisely as a product of its dimensions.  A diagram containing three or four terms could help 
illustrate this more clearly:  The expression (𝑎 + 𝑏 + 𝑐)(𝑝 + 𝑞 + 𝑟 + 𝑠) is more concise than an 
equivalent expression containing the sum of twelve terms.  Using the factored form makes it easier 
to evaluate areas, as less substitution is required.  For example, it is more efficient to evaluate (𝑎 +
𝑏 + 𝑐)(𝑝 + 𝑞 + 𝑟 + 𝑠) than 𝑎𝑝 + 𝑎𝑞 + 𝑎𝑟 + 𝑎𝑠 + 𝑏𝑝 + 𝑏𝑞 + 𝑏𝑟 + 𝑏𝑠 + 𝑐𝑝 + 𝑐𝑞 + 𝑐𝑟 + 𝑐𝑠 when 
the values for 𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟 and 𝑠 are known. 

http://www.projectmaths.ie/workshops/workshop5/TeacherResourceBooklet.pdf


15 
 

 
Steps for Multiplying (𝒑 + 𝒒)(𝒓 + 𝒔) using the Array Model 

Step 1 Step 2 Step 3         Steps 4 and 5 
 𝑟 +𝑠   𝑟 +𝑠   𝑟 +𝑠   𝑟 +𝑠 

𝑝    𝑝 𝑝𝑟   𝑝 𝑝𝑟 +𝑝𝑠  𝑝 𝑝𝑟 +𝑝𝑠 

+𝑞    +𝑞    +𝑞    +𝑞 +𝑞𝑟 +𝑞𝑠 

       
Thus (𝑝 + 𝑞)(𝑟 + 𝑠) = 𝑝𝑟 + 𝑝𝑠 + 𝑞𝑟 + 𝑞𝑠 

 
Multiplying (𝑝 + 𝑞)(𝑟 + 𝑠) by another, more traditional method, for example, splitting the first 
bracket, should also be shown in parallel with the array model method.   
 
Steps for Factorising 𝒑𝒓 + 𝒑𝒔 + 𝒒𝒓 + 𝒒𝒔 using the Array Model 

Step 1 Step 2 Step 3         Step 4 
         𝑟 +𝑠   𝑟 +𝑠 

 𝑝𝑟 +𝑝𝑠  𝑝 𝑝𝑟 +𝑝𝑠  𝑝 𝑝𝑟 +𝑝𝑠  𝑝 𝑝𝑟 +𝑝𝑠 

 +𝑞𝑟 +𝑞𝑠   +𝑞𝑟 +𝑞𝑠   +𝑞𝑟 +𝑞𝑠  𝑞 +𝑞𝑟 +𝑞𝑠 

       
Thus 𝑝𝑟 + 𝑝𝑠 + 𝑞𝑟 + 𝑞𝑠 = (𝑝 + 𝑞)(𝑟 + 𝑠) 

 
Factorising 𝑝𝑟 + 𝑝𝑠 + 𝑞𝑟 + 𝑞𝑠 by another, more traditional method, should also be shown in 
parallel with the array model method.   
 
Expressions of the form (𝑥 + 3)2,  𝑥2 + 3𝑥 + 3𝑥 + 9,  (𝑥 + 𝑦)2 and 𝑥2 + 𝑥𝑦 + 𝑥𝑦 + 𝑦2 could also 
be investigated. 

  
 
 
Another matching exercise with questions similar to the one below could also be used to see 
equivalent and non-equivalent forms.  This question is from the Workshop 5 Teacher Resource 
Booklet. 

 
 
 
 
 
 

  

http://www.projectmaths.ie/workshops/workshop5/TeacherResourceBooklet.pdf
http://www.projectmaths.ie/workshops/workshop5/TeacherResourceBooklet.pdf
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Unit 15: Multiplying Two Linear Expressions and Factorising Quadratic 
Expressions 
In this Unit students will: 

 Expand expressions of the form 
o (𝑥 + 2)(𝑥 + 3) 
o (𝑥 − 4)(𝑥 + 9) 
o (𝑥 − 5)(𝑥 − 7) 

 Factorise expressions of the form 
o 𝑥2 + 5𝑥 + 6 
o 𝑥2 + 5𝑥 − 36  
o 𝑥2 − 12𝑥 + 35 

 
Note: There is a small number of algebraic skills that need to be made explicit here before showing 
students why they need the skill.  All students should be taught to expand expressions of the form 
(𝑥 + 2)(𝑥 + 3) and (𝑥 − 4)(𝑥 + 9) and factorise quadratic expressions like 𝑥2 + 5𝑥 + 6 and 𝑥2 +
5𝑥 − 36.  All other multiplciation and factorising can be left until solving quadratic equations is 
encountered.  This will create an awareness of why the skill of factorising the quadratic is required.  
In motivating the need for these skills, it could be pointed out to students that the skill of factorising 

is valuable when solving quadratic equations and simplifying expressions of the form  
𝑥2+5𝑥+6

𝑥+2
, for 

example. 
 
Ultimately, the goal of this Unit is to link expanding products of the form (𝑥 + 2)(𝑥 + 3), (𝑥 −
4)(𝑥 + 9), and (𝑥 − 5)(𝑥 − 7) with factorising expressions like 𝑥2 + 5𝑥 + 6, 𝑥2 + 5𝑥 − 36 and 
𝑥2 − 12𝑥 + 35. 
Note: The list of expansions directly above should be regarded as the minimum that students should 
encounter at this stage. However, it is advised that not too much time be spent expanding further 
expressions of these types at this stage as they will be encountered in greater detail later. 
 
Multiplying the expressions can be approached in many ways.  Two complementary methods, which 
can be done in parallel, are shown below.   
 
       (𝑥 + 2)(𝑥 + 3) 

= 𝑥(𝑥 + 3) + 2(𝑥 + 3) 

= 𝑥2 + 3𝑥 + 2𝑥 + 6 

= 𝑥2 + 5𝑥 + 6 
 

Number Work 

1213 can be expressed as (10+2)(10+3) and can also be drawn as a rectangle with dimensions 
(10+2) and (10+3). 

        1213 
   = (10+2)(10+3) 
   = 10(10+3)+2(10+3) 
   = 100+30+20+6 
   = 156 
Any work done previously with factors, multiples, prime numbers, composite numbers and square 
numbers would also help when students are learning how to factorise quadratic expressions. 
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Below are two options for factorising the expressions of the form 𝑥2 + 5𝑥 − 36 and 𝑥2 − 12𝑥 + 35. 
 
Option 1: With Algebra Tiles: 
𝑥2 + 5𝑥 + 6. Ask students to arrange one 𝑥2 tile, five 𝑥 tiles 
and six unit tiles into a rectangle.  How many ways can it be 
done?  What are the dimensions of the rectangle? 
Note: It is also possible to use Algebra Tiles to visualise 
factorising expressions like 𝑥2 + 5𝑥 − 36 and 𝑥2 − 12𝑥 + 35. 
 
 
Option 2: Without Algebra Tiles: 
Look at the solutions of a few questions like the ones below and ask students do they spot any 
relationship between the numbers in the factors and the numbers in the product?  Then hide the 
questions below and ask them to factorise an expression (it could even be one of the expressions 
from below).   
With this option you could still ask students to draw an 𝑥2, five 𝑥s and six units in the shape of a 
rectangle i.e. make a diagram that is similar to Algebra Tiles. 
 

       (𝑥 + 2)(𝑥 + 3) 
= 𝑥(𝑥 + 3) + 2(𝑥 + 3) 
= 𝑥2 + 3𝑥 + 2𝑥 + 6 
= 𝑥2 + 5𝑥 + 6 

       (𝑥 + 6)(𝑥 + 7) 
= 𝑥(𝑥 + 7) + 6(𝑥 + 7) 
= 𝑥2 + 7𝑥 + 6𝑥 + 42 
= 𝑥2 + 13𝑥 + 42 

       (𝑥 − 4)(𝑥 + 9) 
= 𝑥(𝑥 + 9) − 4(𝑥 + 9) 
= 𝑥2 + 9𝑥 − 4𝑥 − 36 
= 𝑥2 + 5𝑥 − 36 

       (𝑥 − 5)(𝑥 − 7) 
= 𝑥(𝑥 − 7) − 5(𝑥 − 7) 
= 𝑥2 − 7𝑥 − 5𝑥 + 35 
= 𝑥2 − 12𝑥 + 35 

 
Notes:  

1. The array model for factorising is a visual representation of the guide number method of 
factorising.   

Factorise: 𝑥2 − 12𝑥 + 35    Rough Work 
=       𝑥2 − 12𝑥 + 35     Guide Number = (1)(35) = 35 
=   𝑥2 − 5𝑥 − 7𝑥 + 35     −1 × −35 = 35   −1 + (−35) = −36 
= 𝑥(𝑥 − 5) − 7(𝑥 − 5)     −5 × −7 = 35    −5 + (−7) = −12 
        (𝑥 − 7)(𝑥 − 5) 
 
 

Step 1 Step 2 Step 3        Step 4 
         𝑥 −5   𝑥 −5 

 𝑥2    𝑥2 −5𝑥  𝑥 𝑥2 −5𝑥  𝑥 𝑥2 −5𝑥 

  +35   −7𝑥 +35   −7𝑥 +6  −7 −7𝑥 +35 

 
       (𝑥 − 7)(𝑥 − 5) 
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Unit 16: Dividing Algebraic Expressions 
In this Unit students will: 

 appreciate how the division of algebraic expressions arises from the need to solve problems 
relating to the area of rectangles 

 divide one dimension of a rectangle into the expression for its area 

 carry out operations of the form: 
o  (𝑥2 + 𝑏𝑥 + 𝑐) ÷ (𝑑𝑥 + 𝑒) 
o  (𝑎𝑥2 + 𝑏𝑥 + 𝑐) ÷ (𝑑𝑥 + 𝑒) 

 
Dividing algebraic expressions can be introduced to students as arising from the need to solve 
problems in area.  If the area of a rectangle is known to be 𝑥2 + 5𝑥 + 6 and one of its dimensions is 
𝑥 + 2 the other dimension can be found using division.  One approach to finding the missing 
dimension is to use the area/array model: 
 

Step 1 Step 2 Step 3         Additional Step 
     𝑥    𝑥 +3   𝑥 +3 

𝑥 𝑥2   𝑥 𝑥2   𝑥 𝑥2   𝑥 𝑥2 +3𝑥 

+2  +6  +2  +6  +2  +6  +2 +2𝑥 +6 

 
Note:  

1. Despite the occurrence of terms with negative coefficients, the array method offers a good 
means of tackling these problems. 

2. It should be emphasised that simplifying a quadratic expression divided by linear expression 
can be done by factorising the quadratic expression as well, and dividing above and below 
by the common factor to get an equivalent expression.   
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Unit 17: A Concept Required for Solving Quadratics – A Special Property of 
Zero 
In this Unit students will: 

 see that when the product of two numbers is zero then one or both of the numbers must be 
zero 

 
The following problem could be posed to students: “We need to use some skills we have learnt and 
learn one new concept to solve the problems  (𝒙 + 𝟐)(𝒙 + 𝟑) = 𝟒𝟐 and (𝒙 + 𝟐)(𝒙 + 𝟑) = 𝟕𝟓𝟔 
using algebra.  Part of your homework tonight is a challenge.  Your challenge is to find two numbers, 
neither of which is zero, whose product is zero.  Be prepared to defend your reasoning and to 
discuss the challenge tomorrow in class.”   
The purpose of this challenge is for students to appreciate the special property of zero.  Hopefully 
this challenge will be memorable as it will be frequently referred to hereafter.  Once students 
understand that when the product of two numbers is zero then one or both of the numbers must 
zero they have the acquired a key skill required to solve quadratic equations.  
 
Alternatively, a “game” could be used where the teacher says he/she can predict the product of any 
number the students’ choose multiplied by a number the teacher chooses.  The teacher can write 
the product on a piece of paper.  Then he/she can ask what number the student chose.  Then the 
teacher can show the product he/she has written on the piece of paper.  The teacher chooses zero.  
This can be repeated until the students understand the concept.   

Note: Investigating a number of examples is not a proof.  See “From Discovery to Proof” on page 79 
of the Junior Certificate Syllabus.   

A proof that the product of two numbers, neither of which is zero, is never zero is shown below: 
To show if 𝑥𝑦 = 0 then 𝑥 = 0 or 𝑦 = 0. 
Suppose 𝑥𝑦 = 0 for 𝑥 ≠ 0, 𝑦 ≠ 0 
𝑥𝑦 = 0 
𝑥𝑦

𝑦
=

0

𝑦
      Dividing both sides by 𝑦.  Note:  𝑦 ≠ 0 

𝑥 = 0 
This contradicts the given fact that 𝑥 ≠ 0. 
A similar contradiction would arise if both sides were divided by 𝑥. 
Thus if 𝑥𝑦 = 0 then 𝑥 = 0 or 𝑦 = 0, as required. 
Note: The proof above is a proof by contradiction, which is only specifically mentioned in the Leaving 
Certificate Higher Level syllabus.  
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Unit 18: Solving a Quadratic Equation Algebraically 
In this Unit students will: 

 solve quadratic equations algebraically 

 see how the algebraic solution relates to solutions found through other methods  
 
The students should be reminded at this stage that they have acquired the skills required to solve 
quadratic equations algebraically and are reintroduced to the problems: 
(i) Which stage has 42 squares?  
(ii) Which stage has 156 squares?   
The use of dynamic software is immensely helpful here.  Solving 𝑥2 + 5𝑥 + 6 = 42 is the same as 
comparing the functions 𝑓(𝑥) = 𝑥2 + 5𝑥 + 6 and 𝑔(𝑥) = 42.  The common value(s) of both 
functions will occur for the same values of 𝑥.  These same values of 𝑥 are also where ℎ(𝑥) = 𝑥2 +
5𝑥 − 36 and 𝑖(𝑥) = 0 are equal.    
Note:  Students have not transformed quadratic functions yet but they have seen the effect of 
changing 𝑐 in the linear function 𝑦 = 𝑚𝑥 + 𝑐.   
Utilising the special property of zero means that  𝑥2 + 5𝑥 + 36 = 42 can be solved. 
𝑥2 + 5𝑥 + 6 = 42 is equivalent to 𝑥2 + 5𝑥 − 36 = 0 by subtracting 42 from both sides, and now 
(𝑥 − 4)(𝑥 + 9) = 0, by factoring the quadratic. 
Finally, since the product of the factors is zero 𝑥 − 4 = 0 or 𝑥 + 9 = 0 and 𝑥 = 4  or 𝑥 = −9 are the 
roots/solutions of the equation 𝑥2 + 5𝑥 − 36 = 0 and, consequently, of the equation 𝑥2 + 5𝑥 +
36 = 42. 
In the context of the question only 𝑥 = 4 makes sense.  Disregard 𝑥 = −9.  Pattern 4 has 42 
squares. 
To illustrate where the 𝑥 = −9 comes from, the partially filled in table and graph from Unit 11 can 
be used.  The points (1, 12), (2, 20), (3, 30) and (4, 42) were completed earlier in the table and graph.  
They should now go back and extend this table back to (–9, 42) and plot these points.    
 

Stage 
Number 

𝒙 

(𝒙 + 𝟐)(𝒙 + 𝟑) 
Number 

of 
Squares 

Rate of 
Change 
of the 

Outputs 

Change 
of the 

Change 
of the 

Outputs 

  –9 –7(–6) 42 
–12  
–10 
–8 
–6 
–4 
–2 
0 

+2 
+4 
+6 
+8 

+10 
+12 

 
 –8 –6(–5) 30 

–7 –5(–4) 20 

–6 –4(–3) 12 

–5 –3(–2) 6 

–4 –2(–1) 2 

–3 –1(0)  0 

–2 0(1) 0 

–1  1(2) 2 

0 2(3) 6 

1 3(4) 12 

2 4(5) 20 

3 5(6) 30 

4 6(7) 42 

 
 

The language of Equation Factors  Roots can be emphasised here in preparation for working in 
reverse at JCHL.  Topic 4.7 has the learning outcome “form quadratic equations given whole number 
roots”. 
𝑥2 + 5𝑥 + 6 = 156 can be looked at in a similar way to emphasise that algebra is efficient (it would 
be tedious to continue the table to when 𝑥 = 10, or use trial and error to get 𝑥 = 10, or estimate 
from a graph that would take quite a while to draw).   

 

http://www.projectmaths.ie/documents/pdf/ActivitySheetForFormingAQuadraticExpressionAndSolvingAQuadraticEquation.pdf
http://www.projectmaths.ie/documents/pdf/ActivitySheetForFormingAQuadraticExpressionAndSolvingAQuadraticEquation.pdf
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Notes: 

1. The table, graph and substitution methods can be used to check the answer we get from the 
most efficient and accurate method i.e. solving algebraically. 

2. To really sell the idea that the algebraic method is best, a continuous function could be used 
i.e. one that uses a domain of R or R+ and where the solutions are not necessarily integers. 

3. 𝑥2 + 5𝑥 − 36 = 0 and 𝑥2 − 12𝑥 + 35 = 0  could be kept in mind as questions to do as 
students have factorised both quadratic expressions before. 

 

Unit 19: Factorising More Quadratic Expressions and Solving More Quadratic 
Equations 
In this Unit students will: 

 factorise expressions such as 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑎 ∈ ℕ, 𝑏, 𝑐 ∈ ℤ   

 solve quadratic equations  
 
This would be a good time to factorise expressions such as 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑎 ∈ ℕ, 𝑏, 𝑐 ∈ ℤ   
 
Additional visual patterns questions can be found in the Student Workbook: Visualising Patterns for 
Quadratic Relationships and in this document Patterns: A Relations Approach to Algebra (which 
includes growing squares (𝑥2), growing rectangles 𝑥(𝑥 + 1), Staircase towers (triangular numbers) 
1

2
𝑥(𝑥+1) and others). 

Real world context questions can be found in Modular Course 3. The following question can also be 
looked at using multiple representation: “Farmer Giles has 14 m of wire mesh fencing. He wants to 
enclose a herb garden in a rectangular shape. What is the area of the largest possible garden he can 
create?”.   
 
Some of the skills work to improve procedural fluency for quadratic equations that can be simplified 
to 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 could be done at this stage.  
  

http://www.projectmaths.ie/documents/PDF/QuadraticPatternsWorkbook.pdf
http://www.projectmaths.ie/documents/PDF/QuadraticPatternsWorkbook.pdf
http://www.projectmaths.ie/workshops/workshop4/PatternsARelationsApproachToAlgebra.pdf
http://www.projectmaths.ie/for-teachers/modular-course/modular-course-3-number-and-algebra/
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Extending Students’ Appreciation of Quadratic Equations and Functions 
The multifaceted approach adopted to solving quadratic equations creates opportunities to explore 
and exploit links to a number of related areas.  Below are three areas that can, and should, be 
investigated in parallel with work on improving procedural fluency for solving quadratic equations. 
These three areas are:  
(i) Key Features of Quadratic Functions 
(ii) Graphical Solutions to Algebraic Inequalities 
(iii)  Analysing the Table of Values of Quadratic Functions in Greater Depth 
 
(i) Key Features of Quadratic Functions: 

 
Domain: What is the domain of the function? 
Range: What is the range of the function? 
Where the graph of the function meets the axes: Where does the function intersect the 𝑥 and 𝑦 
axes? 
Constant(s): What is constant in the function? 
Variable(s): What is varying in the function? 
Behaviour of the Graph of the Function: For what values of 𝑥 is does the function have outputs that 
are (i) Positive, (ii) Negative or (iii) Zero? 
For what values of 𝑥 is the function (i) increasing or (ii) decreasing? 
Does the function have a turning point? 
How would you describe the shape of the graph of the function? 
 Turning Point 

Axis of symmetry 
The Rate of Change of the Function: 
The slope of the tangent to the function is Leaving Certificate material.  However, if students are 
asked the question above “For what values of 𝑥 is the function (i) increasing or (ii) decreasing?” 
students should be able to see a link between the fact that the graph’s values are decreasing 
between 𝑥 = −9 and 𝑥 = −2.5 and the “changes” in the outputs of quadratic function in a table are 
mostly negative in this part of the table i.e. –12, –10, –8, –6, –4, –2 and 0. 
These are average rates of change; the change over an interval. 
 
 
 

http://www.projectmaths.ie/documents/pdf/ActivitySheetForFormingAQuadraticExpressionAndSolvingAQuadraticEquation.pdf
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Note: If the function had a domain of ℝ this function would be continuous and at Leaving Certificate 
the students could get the instantaneous rate of change at any point. 
To focus this on what can be done with Junior Certificate Higher Level students in preparation for 
Leaving Certificate it would be opportune to ask students “For what values of 𝑥 is the function (i) 
increasing or (ii) decreasing?” and see if they can see a link between the graph and the table. 
 
(ii) Graphical Solutions to Algebraic Inequalities 
The following learning outcomes from topic 5.2:  
“use graphical methods to find approximate solutions where 𝑓(𝑥) = 𝑔(𝑥) and interpret the results 
“find maximum and minimum values of quadratic functions from a graph” 
“interpret inequalities of the form 𝑓(𝑥) ≤ 𝑔(𝑥) as a comparison of functions of the above form; use 
graphical methods to find approximate solution sets of such inequalities and interpret the results” 
 
Below are some questions that could be used at this time when students will be making out graphs 
of quadratic and linear functions to develop understanding of some of the learning outcomes from 
topic 5.2. 
 
1. Point to where the graphs of the functions intersect. 
2. Write down the coordinates of the point of intersection. 
3. For what value(s) of 𝑥 do both functions have the same value? 
4. For what value(s) of 𝑥 do both functions have the same output? 
5. Point to the function has its maximum or minimum value. 
6. Write down the coordinates of the point on the graph of the function where the function has its 
lowest (or highest) value. 
7. Point to where the quadratic function has higher values than the linear function. 
8. Point to where the quadratic function has lower values than the linear function. 
9. For what values of 𝑥 does the quadratic function have the higher values than the linear function? 
10. For what values of 𝑥 does the quadratic function have the lower values than the linear function? 
11. For what values of 𝑥 does the quadratic function have the greater outputs than the linear 
function? 
12. For what values of 𝑥 does the quadratic function have the greater outputs than the linear 
function? 
(Does the table of values confirm that your answers to the questions above could be correct?) 
 
The questions above could be useful for questions like  
“Solve for 𝑥 in the following equation: 𝑥2 − 2𝑥 − 8 = 7” 

   
 
 
(iii)  Analysing the Table of Values of Quadratics in Greater Depth 
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The table of values for a quadratic could also be analysed in more depth at this stage to do some 
work on the following learning outcome from topic 4.4: “recognise that a distinguishing feature of 
quadratic relations is the way the change varies”.   
Students could also be encouraged to notice that the change of the change is constant.   
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Unit 20: Solving Quadratic Equations using  𝒙 =
−𝒃±√𝒃𝟐−𝟒𝒂𝒄

𝟐𝒂
   

In this Unit students will: 

 see that not all quadratic equations have integer or rational solutions 

 see that the factorisation method for solving quadratic equations will not always work  

 solve quadratic equations algebraically using 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

 check solutions using a table, graph, substitution and the table function on the calculator 
 
Students should be encouraged to look over the solutions they have found to the equations they 
have solved and see if they notice what type of numbers they are.  The answers have all been 
rational numbers.  Students have seen that 𝑥2 + 5𝑥 + 6 = 42 can be represented by two functions; 
one quadratic and one linear.  A quadratic function and a linear function could be sketched on the 
board and students could be asked do they think that the solutions will always be rational numbers 
every time a quadratic function and a linear function intersect? 
Students could be asked to solve 𝑥2 − 5𝑥 + 2 = 10.  When they get stuck (because 𝑥2 − 5𝑥 − 8 
cannot be factorised) encourage them to make out a table of values for 𝑓(𝑥) = 𝑥2 − 5𝑥 + 2 to see 
when the function has an output of 10 and/or make out a table of values for ℎ(𝑥) = 𝑥2 − 5𝑥 − 8 to 
see when the function has an output of 0.  Graphs could be drawn as well. 
 
As said in the bullet points above, students need to be shown a quadratic equation where 
factorisation will not work to appreciate that another method is required, for example, 𝑥2 − 5𝑥 −
8 = 0. 
 
Note: The numbers in the question were chosen carefully to ensure the coefficient of 𝑥 is negative.  
This ensures that it will be advantageous to use brackets for all parts of the substitution that is 
required.  If 𝑏 was 4 then the – 𝑏 and the 𝑏2 could be written as −4 and 42 and some students might 
then in the future write −52 instead of (−5)2.  Starting with a negative coefficient of 𝑥 in the first 
example means that the – 𝑏 and the 𝑏2 could be written as −(−5) and (−5)2 which starts good 
habits for the future. 
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Unit 21: Transformations of Quadratic Functions and Different Forms of a 
Quadratic 
In this Unit students will: 

 verbalise the effect of the “𝑎” in 𝑔(𝑥) = 𝑎𝑥2, using the language of transformation 
geometry 

 verbalise the effect of the “𝑐” in 𝑔(𝑥) = 𝑥2 + 𝑐, using the language of transformation 
geometry 

 verbalise the effect of the “𝑎” in 𝑔(𝑥) = (𝑥 + 𝑎)2, using the language of transformation 
geometry 

 use information of functions of the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 or 𝑓(𝑥) = (𝑥 + 𝑎)(𝑥 + 𝑏) to 
sketch the function 

 form quadratic equations when given whole-number roots 
 
This Unit has three sections (i) Transformations of Quadratic Functions and (ii) Different Forms of a 
Quadratic Activity 1 (Different Forms of a Quadratic Activity 2 will be in the next Unit) and (iii) 
Forming Quadratic Equations when Given Whole Number Roots. 
 
(i) Transformations of Quadratic Functions 
The sets of functions below are very similar the ones in the Workshop 7 Teacher Resource Booklet. 
The sets could be divided amongst the class.  Each group of students must make out a table for a set 
of four functions.  Each group should draw a set of four functions on the one diagram, using 
different colours for each function. Each group should then verbalise what 𝑔(𝑥), ℎ(𝑥) and 𝑝(𝑥) look 
like when compared to the parent function 𝑓(𝑥) = 𝑥2.  It is not necessary for each student to draw 
all twenty functions. 
Set 1: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 2𝑥2, ℎ(𝑥) = 3𝑥2, 𝑝(𝑥) = 0.5𝑥2 all in the domain −3 ≤ 𝑥 ≤ 3. 
Set 2: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = −𝑥2,  ℎ(𝑥) = −2𝑥2, 𝑝(𝑥) = −0.5𝑥2 all in the domain −3 ≤ 𝑥 ≤ 3. 
Set 3: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥2 + 1,  ℎ(𝑥) = 𝑥2 + 3, 𝑝(𝑥) = 𝑥2 − 4 all in the domain −3 ≤ 𝑥 ≤ 3. 
Set 4: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = −𝑥2,  ℎ(𝑥) = −𝑥2 + 3, 𝑝(𝑥) = −𝑥2 − 4 all in the domain −3 ≤ 𝑥 ≤ 3. 
Set 5: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = (𝑥 + 1)2,  ℎ(𝑥) = (𝑥 + 2)2, 𝑝(𝑥) = (𝑥 − 3)2 in the domains −3 ≤ 𝑥 ≤
3, −4 ≤ 𝑥 ≤ 2, −5 ≤ 𝑥 ≤ 1, 0 ≤ 𝑥 ≤ 6. 

Set 1 

 

Set 2 

 

Set 3 

 

Set 4 

 

Set 5 

 
 
The language of parent function, translate, vertical, horizontal, stretch, compress, shift, scale and 
reflect can be used: 
Example 1: 𝑔(𝑥) = 2𝑥2,  −3 ≤ 𝑥 ≤ 3 could be described as a scaled version of the parent function   
𝑓(𝑥) = 𝑥2, −3 ≤ 𝑥 ≤ 3.  Note: Neither function is “thinner” than the other. 
Example 2: 𝑔(𝑥) = −𝑥2,  −3 ≤ 𝑥 ≤ 3 could be described as the image of the parent function   
𝑓(𝑥) = 𝑥2, −3 ≤ 𝑥 ≤ 3 under a reflection in the 𝑥-axis. 
Example 3: 𝑔(𝑥) = (𝑥 + 1)2, −4 ≤ 𝑥 ≤ 2 could be described as the image of the parent function   
𝑓(𝑥) = 𝑥2, −3 ≤ 𝑥 ≤ 3 under a horizontal translation of one unit to the left. 
 

http://www.projectmaths.ie/documents/pdf/TransformationsOfQuadraticFunctionsAndDifferentFormsOfAQuadratic.pdf
http://www.projectmaths.ie/workshops/workshop7/TeacherResourceBooklet.pdf
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/geogebra/quadratic-transformations/
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The order of operations is central to these transformations.  Throughout all the sets above the 
pattern 9, 4, 1 0, 1, 4, 9 will be seen repeatedly.   
Example 1: The squaring will be performed first in 𝑔(𝑥) = 2𝑥2 resulting in 2(9), 2(4), 2(1), 2(0), 2(1), 
2(4) and 2(9).  Each output of the parent function is then doubled.   
Example 2: ℎ(𝑥) = 𝑥2 + 1 will result in 9+1, 4+1, 1+1, 0+1, 1+1, 4+1 and 9+1.  Each output of the 
parent function has been increased by one.   
Note: (𝑥 + 𝑎)2 should be investigated so students can understand that if a quadratic equation has a 
repeated root they can use the root twice to form a pair of identical factors and then form the 
quadratic expression. 
 
(ii) Different Forms of a Quadratic Activity 1 
The Workshop 7 Teacher Resources Booklet also contains an activity called “Different Forms of a 
Quadratic”.  
This document will use two forms from the booklet 𝑦 = 𝑥2 − 4𝑥 − 5 and 𝑦 = (𝑥 − 5)(𝑥 + 1) 
Graph both functions in the domain −2 ≤ 𝑥 ≤ 6. 

 
(a) What items of information from each of the forms can help us if sketching the graph of a 
function? 
We can glean that the graph will be ∪-shaped and will have a 𝑦-intercept of –5 from 𝑦 = 𝑥2 − 4𝑥 −
5. 
We can glean that the graph will have roots at 𝑥 = 5 and 𝑥 = −1 from 𝑦 = (𝑥 − 5)(𝑥 + 1).  It is 
also easy enough to work out that the graph will be ∪-shaped.  
(b) What algebraic skills are used to convert from one form to another? 
We use the skills of expansion and factorising to transform from one form to the other. 
 
(iii) Forming Quadratic Equations when Given Whole Number Roots 

The language of Equation Factors  Roots was emphasised in a previous Unit in preparation for 
working from the roots to the equation.  Topic 4.7 has the learning outcome “form quadratic 
equations given whole number roots”. 
𝑦 = 𝑥2 − 4𝑥 − 5 and 𝑦 = (𝑥 − 5)(𝑥 + 1) were analysed above.   
The roots of the function 𝑦 = 𝑥2 − 4𝑥 − 5 or 𝑦 = (𝑥 − 5)(𝑥 + 1) are 𝑥 = −1 and 𝑥 = 5. 
The skill of using the roots of the function 𝑥 = −1 and 𝑥 = 5 to get the factors (𝑥 + 1) and (𝑥 − 5) 
to form the quadratic equation (𝑥 − 5)(𝑥 + 1) = 0 or 𝑥2 − 4𝑥 − 5 = 0 could be dealt with now. 
 
The functions in Set 5 above (𝑥2, (𝑥 + 1)2,  (𝑥 + 2)2, (𝑥 − 3)2 in the domains −3 ≤ 𝑥 ≤ 3, −4 ≤
𝑥 ≤ 2, −5 ≤ 𝑥 ≤ 1, 0 ≤ 𝑥 ≤ 6) would be a good starting point for exploring questions where there 
is a repeated root. 

http://www.projectmaths.ie/documents/pdf/TransformationsOfQuadraticFunctionsAndDifferentFormsOfAQuadratic.pdf
http://www.projectmaths.ie/workshops/workshop7/TeacherResourceBooklet.pdf
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Note: The activities above should make it a little easier to show the effect of “𝑎” and “𝑐” on 𝑓(𝑥) =
𝑎𝑥2 + 𝑏𝑥 + 𝑐, especially with the aid of dynamic software.  The curious student may ask about the 
effect of “𝑏”.  𝑏 is the slope of the tangent at the 𝑦-intercept.  The proof of this requires 
understanding of calculus.  
𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐   
𝑓′(𝑥) = 2𝑎𝑥 + 𝑏  
𝑓′(0) = 𝑏   
Showing the slope of the tangent at the 𝑦-intercept for a few quadratic functions with different 
values for 𝑏 using dynamic software should satisfy some of this student’s curiosity. 
 

Unit 22: The Difference of Two Squares 
In this Unit students will: 

 visualise the difference of two squares  

 use information of functions of the form 𝑓(𝑥) = 𝑥2 − 𝑎 or 𝑓(𝑥) = (𝑥 + 𝑏)(𝑥 − 𝑏) to sketch 
the function. 

 verbalise the effect of the “𝑎” in 𝑔(𝑥) = 𝑥2 − 𝑎, using the language of transformation 
geometry 

 verbalise the effect of the “𝑏” in 𝑔(𝑥) = (𝑥 + 𝑏)(𝑥 − 𝑏), using the language of 
transformation geometry 

 
The first three sections of this Unit will look at a variety of ways of investigating the difference of two 
squares.  These are: 
(i) The Difference of Two Squares from a Numerical Perspective,  
(ii) The Difference of Two Squares from a Geometric Perspective and  
(iii) The Difference of Two Squares from a Transformation of Functions Perspective.   
The final section in the Unit looks at  
(iv) The Different Forms of a Quadratic Activity 2  
 
(i) The Difference of Two Squares from a Numerical Perspective 
Students could be asked to pick a (natural) number and find the product of the numbers that are one 
smaller and one larger than it.  Record this product and compare it to the square of the original 
number.  Ask them to verbalise what they see.  For example, (9–1)(9+1)=(8)(10)=80 is one less than 
(9)2.   This is investigating(𝑥 − 1)(𝑥 + 1) = 𝑥2 − 1.  (𝑥 − 2)(𝑥 + 2) = 𝑥2 − 4 and others of the 
form (𝑥 + 𝑏)(𝑥 − 𝑏) = 𝑥2 − 𝑏2 could also be investigated. 
 
(ii) The Difference of Two Squares from a Geometric Perspective 
One example of this is the work done here for Reflections on Practice where students cut different 
size squares from a 10 × 10 square.  The area remaining can be made into a rectangle.  The 
dimensions of which can be expressed as 102 − 𝑏2 = (10 − 𝑏)(10 + 𝑏)).     The diagram below 
shows how this pattern can be generalised further to 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏). 
 

http://www.projectmaths.ie/documents/MathsCounts2015/LessonPlan14.pdf
http://www.projectmaths.ie/geogebra/quadratic-transformations/
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http://en.wikipedia.org/wiki/Difference_of_two_squares 

 
 
(iii) The Difference of Two Squares from a Transformation of Functions Perspective 
The pattern (𝑥 − 𝑎)(𝑥 + 𝑎) could be explored from a transformation of functions point of view. 
Students investigated five sets of functions in the previous Unit and they could do something similar 
for a sixth set of functions in this Unit. 
Set 6: 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = (𝑥 − 1)(𝑥 + 1),  ℎ(𝑥) = (𝑥 − 2)(𝑥 + 2), 𝑝(𝑥) = (𝑥 − 3)(𝑥 + 3) all in the 
domain −3 ≤ 𝑥 ≤ 3. 
 

Set 6 

 
 
(iv) The Different Forms of a Quadratic Activity 2  
The previous Unit had a similar activity.  
 
𝑦 = 𝑥2 − 9 and 𝑦 = (𝑥 + 3)(𝑥 − 3) are two functions.  Graph both functions in the domain −4 ≤
𝑥 ≤ 4. 

(a) What items of information from each of the functions can help us if 
sketching the graph of a function?  
We can glean that the graph will be ∪-shaped and will have a 𝑦-intercept of –9 
from 𝑦 = 𝑥2 − 9. 
We can glean that the function has roots at 𝑥 = −3 and 𝑥 = +3  and the graph 
will cut the 𝑥-axis at these values.  From 𝑦 = (𝑥 + 3)(𝑥 − 3).  It is also easy 
enough to work out that the graph will be ∪-shaped.  
 
(b) What algebraic skills are used to convert from one form to another? 
We use the skills of expansion and factorising to transform from one form to 
the other. 

Note: Students will already be able to expand and simplify (𝑥 + 3)(𝑥 − 3) into 𝑥2 − 9. If the 
students haven’t discovered the method for factorising 𝑥2 − 9 from work done earlier in this Unit 
then now is a good time to do so.  The diagram of 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏) from earlier would be 
the most useful for this.  Being able to express functions in factored form was very useful earlier for 
solving quadratic equations.  The diagram of 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏) transforms 𝑎2 − 𝑏2 into a 

http://en.wikipedia.org/wiki/Difference_of_two_squares
http://www.projectmaths.ie/documents/pdf/TransformationsOfQuadraticFunctionsAndDifferentFormsOfAQuadratic.pdf
http://www.projectmaths.ie/geogebra/quadratic-transformations/
http://www.projectmaths.ie/documents/pdf/TransformationsOfQuadraticFunctionsAndDifferentFormsOfAQuadratic.pdf
http://www.projectmaths.ie/geogebra/quadratic-transformations/
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rectangle and the area of a rectangle can be expressed as the product of two factors, which in this 
case would be (𝑎 − 𝑏)(𝑎 + 𝑏). 
 
Topic 4.6 has the learning outcome “factorise expressions such as….difference of two squares 
𝑎2𝑥2 − 𝑏2𝑦2”.  This type of question could be addressed now. 

  



31 
 

Unit 23: Cubic Expressions 
In this Unit students will: 

 evaluate expressions of the form 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ 

 simplify expressions such as 𝑎𝑥(𝑏𝑥2 + 𝑐) where 𝑎, 𝑏, 𝑐 ∈ ℤ 

 multiply expressions of the form (𝑎𝑥 + 𝑏)(𝑐𝑥2 + 𝑑𝑥 + 𝑒) where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℤ  

 divide expressions of the form (𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑) ÷ (𝑒𝑥 + 𝑓) where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℤ 
 
Cubic functions are not listed in topic 5.2 of the Junior Cert. syllabus.  If they were, it would be a 
good idea to look at their graphs.  The graphs of cubic functions could still be explored.  It would not 
take long to look at one cubic function even by just using ICT to see that some of the many things 
students learned about quadratic functions will also be true for functions of a higher order, for 
example, the link between linear factors and the roots of a function.   
 
Students could be asked to substitute in values to expressions like 𝑎𝑥(𝑏𝑥2 + 𝑐) and the simplified 
version of this i.e. 𝑎𝑏𝑥3 + 𝑎𝑥𝑐.  Students could evaluate expressions of the form 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ.   
 
Earlier in this document students learned the skill of dividing a quadratic expression by a linear 
expression almost immediately after multiplying linear expressions by one another to get a quadratic 
expression.  Students could be shown this work from a previous Unit.  Something similar is 
suggested in this Unit for cubic expressions. 
 
Students could be asked to do a small number of questions that require them to multiply a linear 
expression by a quadratic expression to get a product, which is cubic i.e. multiply expressions of the 
form (𝑎𝑥 + 𝑏)(𝑐𝑥2 + 𝑑𝑥 + 𝑒) where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℤ.  Then they could be asked to do a small 
number of questions that require them to do the reverse i.e. divide expressions of the form (𝑎𝑥3 +
𝑏𝑥2 + 𝑐𝑥 + 𝑑) ÷ (𝑒𝑥 + 𝑓) where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℤ.   
 
Note: The array model can be used for the multiplication and division skills mentioned above. 
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Unit 24: Exponential Patterns, Relationships and Functions 
In this Unit students will: 

 represent an exponential relationship in many ways 

 identify the key features of functions 𝑓(𝑥) = 2𝑥 and 𝑔(𝑥) = 3𝑥  

 identify the key features of functions 𝑓(𝑥) = 𝑎2𝑥 and 𝑔(𝑥) = 𝑎3𝑥  

 find approximate solutions from graphs that show the comparison of two functions 
 
The Pocket money question from Workshop 4 
using multiple representations is good 
question for introducing exponential relations.  
 
The 2x, 3x activity from Workshop 7 highlighted 
many of the key features of exponential 
functions. For both 𝑓(𝑥) = 2𝑥 and 𝑔(𝑥) = 3𝑥 
and any function of the form ℎ(𝑥) = 𝑎𝑥 , 𝑎 > 1 
the domain is ℝ, the range is ℝ+ (or at junior 
cycle the positive real numbers), the 𝑦-
intercept is 1, there is no 𝑥-intercept, the 
outputs of the functions are always positive 
and the function is ever increasing.  By 
analysing the change in the values of the outputs it can be seen that the (average) change is always 
increasing when we look from low values to high values of 𝑥. 
 
Functions of the form 𝑓(𝑥) = 𝑎2𝑥 and 𝑔(𝑥) = 𝑎3𝑥 can also be investigated.   
 
Activities from Modular Course 3 that had different stimuli, for example, starting with a story, 
starting with a graph, starting with a table etc. could also be used. 
 
Note: The shape of 𝑓(𝑥) = 𝑎2𝑥 and 𝑔(𝑥) = 𝑎3𝑥 can be connected to the shape of 100(1.04)x when 
studying compound interest i.e. investing €100 at a rate of 4% per year compound interest.   
  

http://www.projectmaths.ie/workshops/workshop4/AFunctionBasedApproachToAlgebra.pdf
http://www.projectmaths.ie/workshops/workshop7/TeacherResourceBooklet.pdf
http://www.projectmaths.ie/documents/modulars/3/Module1Activities.pdf
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Unit 25: Rearranging Formulae 
In this Unit students will: 

 rearrange formulae 
 
Rearranging linear formulae was dealt at the time of studying other aspects of linear relationships.  
Another motivation for rearranging formulae could be to use the substitution method for 
simultaneous equations i.e. expressing each equation in terms of 𝑦 and substituting. 
In certain chapters, outside of algebra, it would be worth doing rearranging of the formula as it turns 
up in the topic i.e. rearranging when there is a need to rearrange.  For example, when studying 𝐴 =
𝑙 × 𝑤 if we know the length and width of a rectangle we can find out the area.  If we know the area 
and the length what is the width?  Can we rearrange the formula? 
This Unit can be dealt with in 3rd year.  Students could rearrange formulas they have rearranged 
before and also some new ones, possibly from the Formulas and Tables book. 
Note: Other topics outside of algebra were mentioned above.  If a formula can be expressed as a 

function then this could be shown to students, for example, C=2r could be represented as C(r)= 2r.  
 

Unit 26: More Algebraic Fractions 
In this Unit students will: 

 add and subtract algebraic expressions such as 
𝑎

𝑏𝑥+𝑐
±

𝑝

𝑞𝑥+𝑟
 where 𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟 ∈ 𝑍 

 

Unit 27: More Factorising by Grouping Questions e.g. 𝒔𝒙 − 𝒕𝒚 + 𝒕𝒙 − 𝒔𝒚 
In this Unit students will: 

 factorise expressions such as 𝑠𝑥 − 𝑡𝑦 + 𝑡𝑥 − 𝑠𝑦, where 𝑠, 𝑡, 𝑥, 𝑦 are variable 
 
Questions like factorising 𝑝𝑟 + 𝑞𝑟 + 𝑝𝑠 + 𝑞𝑠 were addressed in an earlier Unit and each of the four 
terms were small rectangles that were all part of a larger rectangle.  Factorising meant we could 
express the area of the rectangle concisely. 
In this Unit students will factorise expressions like 𝑠𝑥 − 𝑡𝑦 + 𝑡𝑥 − 𝑠𝑦.   The array model can still be 
used.   

 
 

    𝑠𝑥 − 𝑡𝑦 + 𝑡𝑥 − 𝑠𝑦 
    𝑠𝑥 + 𝑡𝑥 − 𝑠𝑦 − 𝑡𝑦 

= 𝑥(𝑠 + 𝑡) − 𝑦(𝑠 + 𝑡) 
= (𝑥 − 𝑦)(𝑠 + 𝑡) 

 

 
 𝑠 +𝑡 

𝑥 𝑠𝑥 +𝑡𝑥 
−𝑦 𝑠 −𝑠𝑦 

 
(𝑥 − 𝑦)(𝑠 + 𝑡) 

Note: It is possible to merge this Unit with the other Unit that included factorising by grouping. 

 


