Student Activity: To investigate the solution of two simultaneous equations with two unknowns

Use in connection with the interactive file, ‘Simultaneous Equations of 2 Unknowns’, on the Student’s CD.

1. a. Complete the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>y=2x+1</th>
<th>y=x+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Draw a graph to represent each of the equations in the above table.
c. Where do the lines representing \(y = 2x + 1 \) and \(y = x + 3 \) meet?

..

d. Hence, what are the co-ordinates of the point which satisfies both

\(y = 2x + 1 \) and \(y = x + 3 \) ?

..

e. Hence, solve \(y = 2x + 1 \) and \(y = x + 3 \).

..

..

..

2. Given \(2x + y = 6 \), write \(y \) in terms of \(x \).

..

3. What is the minimum number of points required to draw a line?

..

4. Using the same axes and scale, draw the lines \(x + y = 3 \) and \(3x + y = 7 \). Where do these lines intersect? Hence, solve this set of equations.

..

..

..

..

..
5. Using the same axes and scale, draw the lines $2x + 3y = 5$ and $1x + 3y = 2.5$. Where do these lines intersect? Hence, solve this set of equations.

6. From looking at the diagram below, is it possible to determine if $x + 2y = 5$ and $0.6x + y = 5$ form a set of simultaneous equations.

7. Given that the lines g and h have each slope of 1, as represented on the diagram below, are there any points that satisfy both the equations $x + y = 5$ and $-2x - 2y = 5$? Explain your answer.
The following equations can be done graphically or algebraically

8. In the school canteen, 1 roll and 2 pieces of fruit cost €4.20 and 3 rolls and 1 piece of fruit cost €9.60. Write two equations in terms of x and y to represent this information. Solve these equations to find the cost of a roll and the cost of a piece of fruit.

9. John is the owner of a shop. If he hires 4 sales assistants and 1 security guard, his daily payroll is €480, while 2 sales assistants and 1 security guard require a daily payroll of €300. Write two equations in terms of x and y to represent this information. Solve these equations. What are the daily wage of a sales assistant and the daily wage of a security guard?

10. The sum of two numbers, a and b, is 45 and their difference is 3. Write two equations in terms of a and b to represent this information. Solve these equations to find the two numbers.

11. 5 oranges and 3 apples cost €2.10 and 3 oranges and 1 apple cost €1.10. Write two equations in terms of x and y to represent this information. Solve these equations to find the cost of an orange and the cost of an apple.

12. There are a number of rabbits and budgies in a cage. Altogether there are 29 heads and 98 legs. Represent this problem as two equations and solve the equations. How many of each type of animal are in the cage?

13. Write a story that the following set of simultaneous equation could represent:

\[2x + y = 11 \]
\[x - 2y = 3 \]

Challenge

14. A car park charges €a to enter and €b per hour after that. John pays €14 for 4 hours parking and Sara pays €20 for 6 hours parking. Write two equations in terms of a and b to represent this information. Solve these equations to find the cost to enter the car park and the cost per hour of parking.

