Student Activity 1d

Tables for each of the functions below are drawn on the next page of this document for $x \in\{-3,-2,-1,0,1,2,3\}$.
Fill out the tables for each function first so that you can decide on a scale which will suit all the functions when plotting a graph.
Plot all the graphs using the same axes and scales on the grid given below. Verify the shape of each graph by calculating y values of points, between those plotted, and comparing the answers with the y values of the same points given by your graph.

Polynomial in the form $f(x)=a x^{2} \pm c$	State the shape of the graph and whether it opens upwards or downwards	x- intercepts (algebraic method and using the graph)	$y-$ intercept (algebraic method and using the graph)	Maximum/ minimum point as an ordered pair and labelled as max or \min	Real root(s) of $f(x)=0$	Equation of the axis of symmetry	$\begin{aligned} & \mathrm{f} \\ & (2.7) \end{aligned}$	Solve $f(x)=$ 8	For what x values is $f(x)$ positive i.e. $f(x)>0 ?$	For what x values is $f(x)$ negative i.e. $f(x)<0 ?$	For what x values is $f(x)$ increasing?	For what x values is $f(x)$ decreasing?
$y=x^{2}$												
$y=3 x^{2}$												
$y=3 x^{2}-4$												
Your own example												

1. What is the effect of the constant a on the graph of the function $f(x)=a x^{2} \pm c$? Explain
2. What is the effect of the constant c on the graph of the function $f(x)=a x^{2} \pm c$? Explain

Student Activity 1d

Draw the graph of $\mathrm{y}=x^{2}$ using a black marker and use different coloured markers to draw the other curves.

Label all the graphs clearly.

x	$y=x^{2}$	(x, y)
		(x, y)
x	$y=3 x^{2}$	
x	$y=3 x^{2}-4$	

