Student Activity 1d

Tables for each of the functions below are drawn on the next page of this document for $x \in \{-3, -2, -1, 0, 1, 2, 3\}$.

Fill out the tables for each function first so that you can decide on a scale which will suit all the functions when plotting a graph.

Plot all the graphs **using the same axes and scales** on the grid given below. Verify the shape of each graph by calculating y values of points, between those plotted, and comparing the answers with the y values of the same points given by your graph.

Polynomial in the form $f(x) = ax^2 \pm c$	State the shape of the graph and whether it opens upwards or downwards	x – intercepts (algebraic method and using the graph)	y – intercept (algebraic method and using the graph)	Maximum/ minimum point as an ordered pair and labelled as max or min	Real root(s) of f(x) =0	Equation of the axis of symmetry	f (2.7)	Solve f(x) = 8	For what x values is $f(x)$ positive i.e. $f(x) > 0$?	For what x values is $f(x)$ negative i.e. $f(x) < 0$?	For what x values is f(x) increasing?	For what x values is f(x) decreasing?
$y = x^2$												
$y = 3x^2$												
$y = 3x^2 - 4$												
Your own example												

- 1. What is the effect of the constant a on the graph of the function $f(x) = ax^2 \pm c$? Explain
- 2. What is the effect of the constant c on the graph of the function $f(x) = ax^2 \pm c$? Explain

Student Activity 1d

Draw the graph of $y = x^2$ using a black marker and use different coloured markers to draw the other curves. Label all the graphs clearly.

	X	$y = 3x^2$	(x, y)
	х	$y = 3x^2 - 4$	(x, y)
	х	<i>y</i> =	()
	A	<i>y</i> –	(x, y)
ı			
ı			