Student Activity: To investigate the addition of complex numbers

Use in connection with the interactive files, 'Addition of complex numbers', and 'Addition by translation of a complex number', on the Student's CD.

1. Add the following complex numbers and check your answers using the interactive file "Addition of Complex numbers".

		Calculate $z_{1}+z_{2}$
a.	$z_{1}=3+2 i$ and $z_{2}=1+4 i$	
b.	$z_{1}=2+3 i$ and $z_{2}=1+3 i$	
c.	$z_{1}=2+4 i$ and $z_{2}=1-3 i$	
d.	$z_{1}=2+4 i$ and $z_{2}=-1-2 i$	
e.	$z_{1}=-3+4 i$ and $z_{2}=1-2 i$	
f.	$z_{1}=-2-4 i$ and $z_{2}=1-3 i$	
g.	$z_{1}=-1-3 i$ and $z_{2}=-2-1 i$	
h.	$z_{1}=i$ and $z_{2}=2+i$	

i.	$z_{1}=i$ and $z_{2}=i$	
j.	$z_{1}=i$ and $z_{2}=-i$	
k.	$z_{1}=1$ and $z_{2}=-1$	
I.	$z_{1}=1$ and $z_{2}=-i$	
m.	$z_{1}=-1-i$ and $z_{2}=-2-i$	
n.	$z_{1}=-1-i$ and $z_{2}=-2-i$	
o.	$z_{1}=1+i, z_{2}=-2-2 i$ and $z_{3}=2+3$	
p.		

2. What shape is formed when you add two complex numbers?
\qquad
3. What complex number would you need to add to $2+3 i$ to get $0+0 i$?
\qquad
4. If two complex numbers z_{1} and z_{2} are added together to give $4+6 i$, list four values z_{1} and z_{2} could have.
\qquad
\qquad
5. Is the addition of complex numbers associative? Explain your answer.
\qquad
a. Plot the following complex numbers in the Argand Diagram.
i. $2+4 i$
ii. $2-2 i$
iii. $-3+i$
iv. $-2-3 i$

b. Add $2+1 i$ to each of the complex numbers in section a. of this question (It is not necessary to show the parallelograms).
\qquad
\qquad
\qquad
\qquad
c. Draw a directed line (a line with an arrow indicating direction) between each complex number and its corresponding number with $2+1 i$ added to it. What do you notice?
\qquad
\qquad
d. What would have happened if instead of adding the complex number $2+1 i$ to each of the complex numbers above you had subtracted $2+1 i$?
