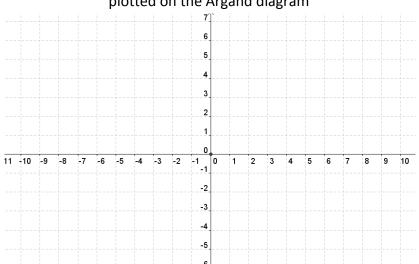


Student Activity: To investigate the Argand diagram and modulus of complex numbers

Use in connection with the interactive file, 'Argand diagram and modulus of a complex number', on the Students CD.

1. Place the following numbers on the Argand diagram and calculate the modulus in each case.

		Modulus = z
a.	z ₁ = 3 +2 <i>i</i>	
b.	$z_1 = 2 + 3i$	
c.	$z_1 = -3 + 4i$	
d.	$z_1 = -2 -4i$	
e.	$z_1 = i$	
f.	z ₁ = -2- <i>i</i>	
g.	$z_1 = 1 + \sqrt{25} i$	


2. Write in your own words, what is meant by the modulus of a complex number.

3. What is the mathematical notation for the modulus of a complex number z?

4. List four complex numbers with a modulus equal to 4.

5. Is $|z_1|+|z_2|$ equal to $|z_1+z_2|$? Always? Sometimes? Never? Explain using examples plotted on the Argand diagram

6. What do you notice about |a+bi| and |a-bi|?

7. Describe how you could show all the complex numbers that have a modulus of 3.

- 8. What do all numbers on the Real Axis of the Argand diagram have in common?
- 9. What do all numbers on the Imaginary Axis of the Argand diagram have in common?