Student Activity on Circles with Centre (-g,-f)

Use in connection with the interactive file "Circles with Centre (-g,-f)" on the Student's CD.

To explore the properties of circles with centre (-g,-f)

The slider called "Step" is used to change the information on the screen.

To start set the slider to "Step = 1"

1. Adjust the sliders and watch the size, equation and location of the circle change.
2. As gincreases, i.e. moves from -5 to 5, what happens the circle? \qquad
3. As g decreases, i.e. moves from 5 to -5 , what happens the circle? \qquad
4. As f increases, i.e. moves from -5 to 5 , what happens the circle? \qquad
5. As f decreases, i.e. moves from 5 to -5 , what happens the circle? \qquad
6. Adjust the sliders and see if you can come up with a relationship between the xcoordinate of the centre and any part of the equation of the circle. \qquad
\qquad
\qquad
7. Adjust the sliders and see if you can come up with a relationship between the y coordinate of the centre and any part of the equation of the circle.
\qquad
\qquad
8. Describe how you would work out the centre of the circle $x^{2}+y^{2}-6 x+4 y-5=0$.
\qquad
\qquad
\qquad
9. Adjust g or f so that the centre of the circle is on the x-axis. What do you notice about the equation? \qquad
10. Adjust g or f so that the centre of the circle is on the y -axis. What do you notice about the equation? \qquad
11. When the centre of the circle is on the x-axis what happens the equation of the circle? \qquad
12. When the centre of the circle is on the y-axis what happens the equation of the circle? \qquad
13. Under what circumstances would a circle have an equation of $x^{2}+y^{2}-9$
$=0$? \qquad
\qquad
14. Under what circumstances would a circle have an equation with no " x " term and a " y " term of $4 y$? \qquad
15. Make $\mathrm{c}=0$. Which piece of the equation is influenced? \qquad
16. Keeping $\mathrm{c}=0$, adjust the sliders g and f and see if you can see any relationship between g, f and the radius of the circle? Finish off the following sentence: When $c=0$ the radius of the circle is \qquad
17. Make $c=0, g=2$, and $f=3$. What is the radius? \qquad
18. Make $\mathrm{c}=1, \mathrm{~g}=2$ and $\mathrm{f}=3$. What is the radius? \qquad
19. Make $\mathrm{c}=2, \mathrm{~g}=2$ and $\mathrm{f}=3$. What is the radius? \qquad
20. Make $c=-1, g=2$ and $f=3$. What is the radius? \qquad
21. Can you work out the formula for the radius in terms of g, f and c ? \qquad
22. Can you find a set of circumstances when you adjust g, f and c that the circle is no longer there i.e. no circle is
drawn? \qquad
23. Substitute the numbers you found in the previous answer into your formula for finding the radius from question 21 . What do you get for the radius? \qquad
24. Would it be possible to have a radius equal to this? \qquad
25. Describe how to find the equation of the circle with centre $(2,4)$ and radius 3 \qquad
\qquad
\qquad
