

Student Activity Construction 21

Use in connection with the interactive file "Constr 21" on the Student's CD.

Construction 21: To construct a centroid of a triangle.

1. Name the vertices of the triangle?

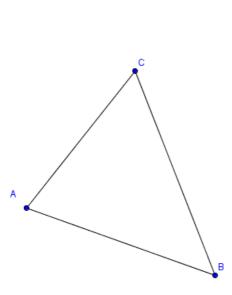
._____

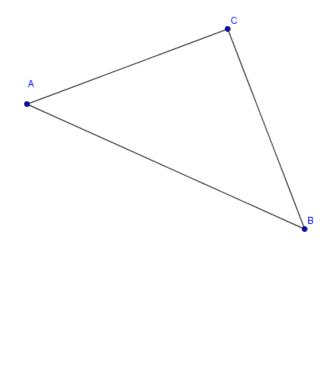
2. Name the three mid points of the sides of the triangle.

3. What is meant by a median of a triangle and name the medians of this triangle?

4. Name the point where the medians of a triangle meet.

5. Using the interactive file describe how to find the centroid of a triangle.

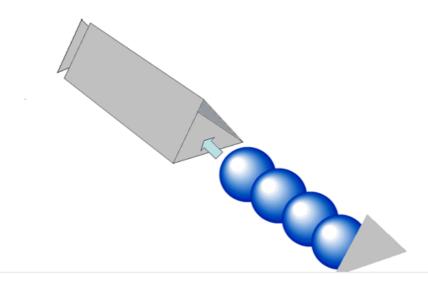




6.	Move the points A, B, C of the triangle and as the triangle changes shape determine
	if the medians are still concurrent (meet at the same point). Explain your answer.

7. How would you describe to a non mathematician, what the centroid of a triangle is?

- 8. What point is the centre of gravity of a triangle?
- 9. Find the centroid of the following triangles:



Challenge

The "Ball Box" problem

The Acme Tennis Ball Company is designing a new box to ship its products. The marketing department wants a triangular box that can hold 4 balls, as in the illustration below. The balls fit exactly inside the box, just touching all three walls and the end caps of the container. All 3 walls of the box are the same size.

Assume a tennis ball is 6 cm in diameter, and ignore the thickness of the box material.

Problem 1

The end of the box is in the shape of a triangle. What is the type and dimensions of the triangle to 2 decimal places?

© http://www.mathopenref.com/problemballbox.html