

Student Activity: To investigate the relationship between integration of a function and the area enclosed by the curve representing the function and the x axis

Use in connection with the interactive file, 'Integration and Area 3', on the Student's CD.

It is recommended that in all instances students draw a sketch of the function in question.

1.

a. Calculate
$$\int_{-0.6}^{0} (x^3 - x) dx.$$

- b. What is the area enclosed by the graph of the function $f(x) = x^3 x$ and the x axis in the interval [-0.6, 0]?
- c. Calculate $\int_{0}^{0.8} (x^3 x) dx.$

d. As area is always positive, what is the total area enclosed by the graph of the function $f(x) = x^3 - x$ and the x axis in the interval [-0.6, 0.8]?

e. Why does $\int_{-0.6}^{0.8} (x^3 - x) dx$ not equal to the total area enclosed by the graph of the function f(x)=x³-x and the x axis in the interval [-0.6, 0.8]

a. Draw a rough sketch of the function f(x) = x(x - 3)(x - 4).

2.

b. Find the area enclosed by the curve representing the function f(x) = x(x-3) (x-4) and the x axis in the interval [0,4]. Show calculations.

3. Find the area enclosed by the graph of the function f(x) = x(x-4) and the x axis in the interval [-1, 3].

4.

a. In order to calculate the area enclosed by the graph of the function $f(x) = x^3 + 3x^2 - x - 3$ and the x axis in the interval [-3, 1], why is it not sufficient to calculate $\int_{-3}^{1} (x^3 + 3x^2 - x - 3) dx$ to represent the total area?

b. Calculate the area enclosed by the graph of the function $f(x) = x^3 + 3x^2 - x - 3$