Student Activity 6

Plot the following graphs using the same axes and scales where $x \in\{-3,-2,-1,0,1,2,3\}$ For (Use the "Table" mode on the calculator and verify the y values you calculate - optional) the cubic functions $f(x)=x^{3}-2 x^{2}-x+2$ and $g(x)=(x+1)(x-1)(x-2)$ fill in the table below. What do you notice?
Multiply out the factors of $\mathrm{g}(\mathrm{x})$ to verify your conclusion. Plot the points on the graph below or on the next page.

\mathbf{x}	$f(x)=x^{3}-2 x^{2}-x+2$	$g(x)=(x+1)(x-1)(x-2)$	
$-\mathbf{2}$			
-1.5			
$\mathbf{- 1}$			
$\mathbf{- 0 . 5}$			
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{1 . 5}$			

What is another way of writing

$$
f(x)=x^{3}-2 x^{2}-x+2 ?
$$

Student Activity 6

Fill in the table below for

$$
y=x^{3}-2 x^{2}-x+2
$$

$y=0$ (roots)	
Local maximum point (approx)	
Local minimum point (approx)	

Sketch the graph of $h(x)=-f(x)$ using the axes and scales above. Fill in the table below for $h(x)$.

Which form of a cubic equation allows us to identify to identify the roots by inspection of the equation?

What transformation of the plane maps $h(x)$ onto $\mathrm{f}(\mathrm{x})$?

