

<u>Student Activity</u>: To solve a linear and a quadratic equation using tables, graphs and algebraic methods

Use in connection with the interactive file, 'Linear and Quadratic', on the Student's CD.

1.

a. Complete the following tables:

x	x ²	3х	2	$f(x) = x^2 + 3x + 2$
-4				
-3				
-2				
-1				
0				
1				
2				

X	g(x) = x + 5
-3	
-2	
-1	
0	
1	
2	

b. Use the information obtained in the table above draw a graph of $f(x) = x^2 + 3x + 2$ in the domain $-4 \le x \le 2$.

- c. Draw a graph of g(x) = x+5 in the domain $-3 \le x \le 2$ using the same axis and scale as f(x) above.
- d. From both of the tables above, are there any value(s) of x for which f(x) =g(x)? If so what are these value(s)?
- e. From the graph above, are there any value(s) of x for which f(x) = g(x)? If so what are these value(s)?
- f. Hence list the solution(s) of f(x) = g(x)?
- g. Solve f(x) = g(x) algebraically.

h. Did your algebraic solution(s) equal the graphically solution(s)?

a. Complete the following tables:

x	<i>x</i> ²	4x	5	$f(x)=x^2+4x+5$
-4				
-3				
-2				
-1				
0				
1				

X	g(x) = -x - 1
-4	
-3	
-2	
-1	
0	
1	
2	

b. Use the information obtained in the table above to draw a graph of $f(x) = x^2 + 4x + 5$ in the domain $-4 \le x \le 1$.

2.

- c. Draw a graph of g(x) = -x-1 in the domain $-4 \le x \le 2$ using the same axis and scale as f(x) above.
- d. From both of the tables above, are there any value(s) of x for which f(x) =g(x)? If so what are these values?
- e. From the graph above, are there any value(s) of x for which f(x) = g(x) and if so what are these value(s)?
- f. Hence what is the solution of f(x) = g(x)?
- g. Solve f(x) = g(x) algebraically.

- h. Did your algebraic solution(s) equal the graphical solution(s)?
- 3. Given that the diagram below represents $f(x) = x^2 + bx + c$ and g(x) = dx + e, find b, c, d and e.

4. Given $h(x) = x^2 + bx + c$ and k(x) = dx + e, is there any solution to f(x) = g(x)? Explain your answer.

5. From the diagram below what is the solution(s) of f(x) = g(x).

6. Using the interactive file solve f(x) = g(x) where $f(x) = x^2 + 4x + 5$ and g(x) = -x + 1. Draw a rough sketch below.

7. Using the information obtained in the above question solve the following set of simultaneous equations $y = x^2 + 4x + 5$ and x + y - 1 = 0.

Challenge

8. Given the length of a rectangular kitchen is half the square of its width and its perimeter is 48 m, find the dimensions of the kitchen.