Student Activity 7b

For the cubic function $f(x)=x^{3}-2 x^{2}-x+2$ fill in the table below using the graph of the function. Mark the points on the graph.
$h(x)=f(x)+1$ Write $h(x)$ in the form $h(x)=a x^{3}+b x^{2}+c x+d$.

Fill in the y values for $h(x)$ using the fact that $h(x)=f(x)+1$.

Plot the points for function $h(x)$ and draw the graph of the function $h(x)$, on the same axes and scales as the graph of $f(x)$.

\mathbf{x}	$f(x)=x^{3}-2 x^{2}-x+2$	$h(x)=$
-1.5		
-1		
-0.5		
0		
1.5		
2		
2.5		

$$
f(x)=x^{3}-2 x^{2}-x+2 \quad h(x)=f(x)+1
$$

	Real Roots of $\mathrm{f}(\mathrm{x})=0$	Turning points	Local Max. point	Local Min. point
$y=f(x)$				
$y=h(x)$				

How many real roots has $y=h(x)$?
Explain your answer.

