Student Activity 7b

For the cubic function $f(x) = x^3 - 2x^2 - x + 2$ fill in the table below using the graph of the function. Mark the points on the graph.

$$h(x) = f(x) + 1$$
 Write $h(x)$ in the form $h(x) = ax^3 + bx^2 + cx + d$.

Fill in the y values for h(x) using the fact that h(x) = f(x) + 1.

Plot the points for function h(x) and draw the graph of the function h(x), on the same axes and scales as the graph of f(x).

х	$f(x) = x^3 - 2x^2 - x + 2$	h(x) =
-1.5		
-1		
-0.5		
0		
1.5		
2		
2.5		

$$f(x) = x^3 - 2x^2 - x + 2$$

	Real Roots of f(x) =0	Turning points	Local Max. point	Local Min. point
y = f(x)				
y = h(x)				

How many real roots has y = h(x)? Explain your answer.