Student Activity 5(i)

Plot the following graphs using the same axes and scales where $x \in\{-3,-2,-1,0,1,2,3\}$ (Use the "Table" mode on the calculator and verify the y values you calculate - optional)
(i) How does the graph of $y=x^{3}$ compare with the graph of $y=x^{2}$?

$1 . y=x^{3}$	$3 \cdot y=2 x^{3}$
$2 . y=-x^{3}$	$4 . y=-2 x^{3}$

x	$y=x^{3}$	$y=2 x^{3}$	$y=-x^{3}$	$y=-2 x^{3}$	
-3					
-2					
-1					
0					
1					
2					
3					

(ii) How many real roots has $f(x)=x^{3}$? What are they?
(iii) What is the effect of the coefficient a on the graph of $y=a x^{3}$?
(iv) What is the effect of the sign of a on the graph of $y=a x^{3}$?
(vi) What transformation maps the graph of $y=x^{3}$ onto the graph of $y=-x^{3}$?
(v) For what values of x is the graph of $y=a x^{3}$ increasing?
(vii) What are the turning points i.e. local max and local min of $y=x^{3}$?

