

<u>Student Activity</u>: To investigate $f(x) = e^x$ and g(x) = ln(x)

Use in connection with the interactive file, ' e^x and ln(x)', on the student's CD.

Note $Ln(x) = log_e x$.

1. Use a calculator to find an approximate value for e correct to 3 decimal places.

2.

a. Complete the following table giving answers correct to 3 decimal places.

x	$y = e^{x}$	ln(y)
3		
2		
1.5		
1		
0.5		
0		
-0.5		
-1		
-1.5		

b. What is the relationship between ln(y) and x in the above table?

c. On the same axis and scale draw the graphs of $f(x) = e^x$ and $f^1(x)$ using the data provided in the table above.

d. Using the interactive file complete the following table for any 4 values of A and the corresponding values of A' and state what pattern you notice.

A (x, y)	A'(x, y)

- e. What do you notice about the shapes of these graphs in relation to each other?
- f. Given $e^{1.34} = 3.82$, what will ln(3.82) equal?
- g. Given $\ln(0.33) = -1.1$, what is $e^{-1.1}$?
- h. What line is e^x reflected in to give ln(x)?
- i. What conclusion have you arrived at with regard to the relationship between the function e^x and ln(x)?