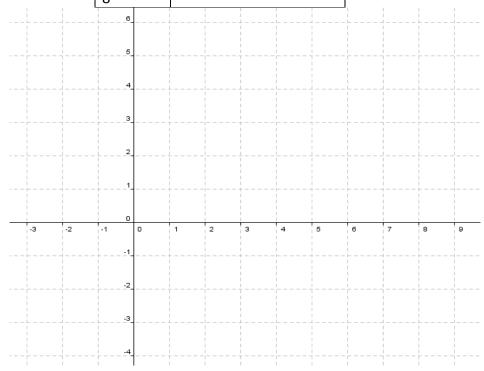


Student Activity: To investigate the graph of log_nx


Use in connection with the interactive file, 'Log Graph', in the Student's CD.

1)

a) Complete the following table using your calculator and draw the graph $f(x) = log_2x$.

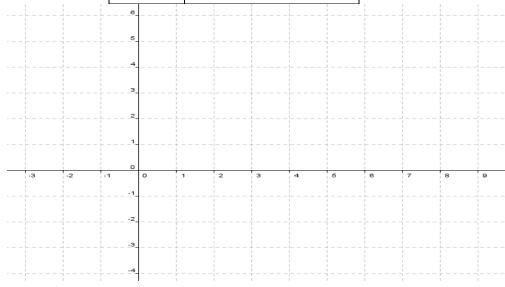
х	$\log_2 x = \frac{\log_{10} x}{\log_{10} 2}$
0	
1/8 1/4 1/2	
1/4	
1/2	
1	
4	
8	

b) Where does this graph cut the x-axis?

c) Determine from your graph an approximate value for log₂7.

d) Explain in your own words, why it is that the graph tends towards the y-axis as x tends towards zero.

e) Could the point (64, 6) lie on the graph $f(x) = log_2x$? Explain your answer; you may test on a calculator if necessary.



f) Could the point (56, 8) lie on the graph $f(x) = log_2x$? Explain your answer; you may test on a calculator if necessary.

2)

a) Complete the following table using your calculator and draw the graph $f(x) = log_3x$.

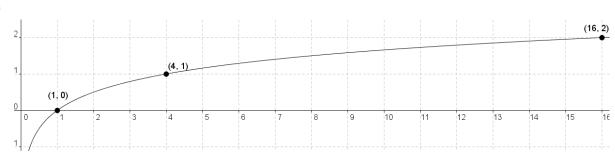
х	$\log_3 x = \frac{\log_{10} x}{\log_{10} 3}$
0	
1/27 1/9 1/3	
1/9	
1/3	
1	
9	

b)	Where does this graph cut the x-axis?	
----	---------------------------------------	--

c) Determine from your graph an approximate value for log₃10.

d) Explain in your own words, why it is that the graph tends towards the y-axis as x tends towards zero.

e) Could the point (243, 5) lie on the graph $f(x) = log_3x$? Explain your answer; you may test on a calculator if necessary.



f) Could the point (56, 6) lie on the graph $f(x) = log_3x$? Explain your answer; you may test on a calculator if necessary.

3)

- a. If you know this graph represents $f(x) = \log_b x$, use the interactive file to find what value b represents.
- b. Verify algebraically, using indices, the answer you got for b above.

4) If $4 = log_2 x$, calculate the numerical value of x.

5)		sing the interactive file find approximate values for the following: $\mbox{Log}_4\mbox{17}$		
	b)	$\log_2 10$		
	c)	log ₃ 10		
	d)	log ₅ 19.		
6)		uld the point (-2, 8) be found on the graph $f(x) = \log_b x$, for any possible value of b. plain your answer.		
7)	List	t 4 points that would be found on the graph $f(x) = log_4x$.		
8)		me 1 point that will always be on the curve $f(x) = \log_b x$, no matter what positive other one value that b has. Explain why.		
9)	De	scribe 3 characteristics of the shape of the curve f(x) =log _b x.		
10)) If y	z= log _b x, write x in terms of b and y.		