Student Activity: To investigate the graph of log_nx Use in connection with the interactive file, 'Log Graph', in the Student's CD. 1) a) Complete the following table using your calculator and draw the graph $f(x) = log_2x$. | х | $\log_2 x = \frac{\log_{10} x}{\log_{10} 2}$ | |-------------------|--| | 0 | | | 1/8
1/4
1/2 | | | 1/4 | | | 1/2 | | | 1 | | | 4 | | | 8 | | b) Where does this graph cut the x-axis? _____ c) Determine from your graph an approximate value for log₂7. ______ d) Explain in your own words, why it is that the graph tends towards the y-axis as x tends towards zero. e) Could the point (64, 6) lie on the graph $f(x) = log_2x$? Explain your answer; you may test on a calculator if necessary. _____ f) Could the point (56, 8) lie on the graph $f(x) = log_2x$? Explain your answer; you may test on a calculator if necessary. 2) a) Complete the following table using your calculator and draw the graph $f(x) = log_3x$. | х | $\log_3 x = \frac{\log_{10} x}{\log_{10} 3}$ | |--------------------|--| | 0 | | | 1/27
1/9
1/3 | | | 1/9 | | | 1/3 | | | 1 | | | 9 | | | b) | Where does this graph cut the x-axis? | | |----|---------------------------------------|--| |----|---------------------------------------|--| _____ c) Determine from your graph an approximate value for log₃10. _____ d) Explain in your own words, why it is that the graph tends towards the y-axis as x tends towards zero. ------ e) Could the point (243, 5) lie on the graph $f(x) = log_3x$? Explain your answer; you may test on a calculator if necessary. ----- ----- f) Could the point (56, 6) lie on the graph $f(x) = log_3x$? Explain your answer; you may test on a calculator if necessary. _____ 3) - a. If you know this graph represents $f(x) = \log_b x$, use the interactive file to find what value b represents. - b. Verify algebraically, using indices, the answer you got for b above. ____ _____ 4) If $4 = log_2 x$, calculate the numerical value of x. _____ | 5) | | sing the interactive file find approximate values for the following: $\mbox{Log}_4\mbox{17}$ | | | |-----|------------|--|--|--| | | | | | | | | b) | $\log_2 10$ | | | | | c) | log ₃ 10 | | | | | d) | log ₅ 19. | | | | | | | | | | 6) | | uld the point (-2, 8) be found on the graph $f(x) = \log_b x$, for any possible value of b. plain your answer. | | | | 7) | List | t 4 points that would be found on the graph $f(x) = log_4x$. | | | | 8) | | me 1 point that will always be on the curve $f(x) = \log_b x$, no matter what positive other one value that b has. Explain why. | | | | 9) | De | scribe 3 characteristics of the shape of the curve f(x) =log _b x. | | | | 10) |
) If y | z= log _b x, write x in terms of b and y. | | |