Student Activity 5(ii)

Plot the following graphs using the same axes and scales where $x \in\{-3,-2,-1,0,1,2,3\}$ (Use the "Table" mode on the calculator and verify the y values you calculate - optional) How does the graph of $y=x^{3}$ compare with the graph of $y=x^{2}$? Use a dynamic geometry software package to check your graph.

(i) $y=x^{3}$	(ii) $y=x^{3}-2$
(iii) $y=x^{3}+2$	Investigate the graph of a similar cubic function

x	$y=x^{3}$	$y=x^{3}+2$	$y=x^{3}-2$	
-3				
-2				
-1				
0				
1				
2				
3				

(i) What is the effect of c on the graph of $y=x^{3}+c$?
(ii) How many real roots has
$y=x^{3}+2$?
(Link to complex numbers - find all the roots)
(iii) For what values of x is
the graph of $y=x^{3}+2$ increasing?
(iv) For what values of x is
the graph of $y=x^{3}+2$ positive?

