Use the two Graphics views to find the Area under a curve by (i) the Integral method and (ii) the Trapezoidal Rule.

1. Go to File and choose New Window.
2. Draw the graph of your function in the usual way. For example in the Input Bar type $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\wedge} \mathbf{2}$.
3. Go to View and select Graphics 2. If the two Graphics views are not aligned right click on the Graphics View and choose Standard View.
4. Select the graph of your function, right click and choose Object Properties.
5. With the Advanced tab open, click Graphics 2.

6. Click at the top of the Dialogue box.
7. Click on the Graphics 1 View and find the integral of the function between 0 and 2 as in the Activity 9 above.
8. Click on the Graphics 2 View.
9. Select the Slider tool $\xrightarrow{a=2}$. Click on the Graphics 2 View and create a slider called n with Min: $=1$, Max: =50 and Increment: = 1. Click Apply.

10. In the Input Bar type $\mathbf{b}=$ TrapeziumSum $[\mathbf{f}, \mathbf{0}, \mathbf{2}, \mathbf{n}]$.

TrapezoidalSum[|<Fi
Note: TrapeziumSum is replaced by TrapezoidalSum, if the GeoGebra Language is set to English(US) instead of English(UK). To change the GeoGebra Language go to Options, Language and follow the arrows.
11. Move the slider \mathbf{n} and as \mathbf{n} gets larger check the relationship between the integral and trapezium area.

Note: The value for the Trapezium sum should eventually have the same value as the integral value when n increases.
Note: To get more accurate area values go to Options, Rounding and choose for example 10 Decimal places.

Can you suggest other uses for the two Graphics Views?
Activity 12: To fit a graph to a list of points that are shown on the Spreadsheet view

1. Go to view and choose Spreadsheet.
2. Insert the x co-ordinates of the points in Column \mathbf{A} and the y co-ordinates in the column \mathbf{B}.

- Spreadsheet

	A	B
1	-3	10
2	-2	5
3	-1	2
4	0	1
5	1	2
6	2	5
7	3	10

3. Highlight the two columns of data in the Spreadsheet, right click, choose Create and List of points.
4. In the Input Bar type Fitpoly[list1,2], if the list is list1 and you require a curve of degree 2 for example.

Note: If you require an exponential curve, input the co-ordinates of the points in the Spreadsheet view and create a list as above and then type FitExp[list1] in the Input Bar, if the list is list1.

