

Lesson Details	Lesson Study Group
Name of Lesson: Explain That Formula	School Name & Address:
Topic: Surface Area of Cylinder	Deele College, Raphoe, Co. Donegal
Year Group: 5th	Associate: Paddy Flood
Level: Ordinary	Link Advisor: Enda Donnelly
	Teachers: Shauna Kelly, Stephen
	Gibson, Katy Herron, Rose Stockdale,
	Orla McCafferty

Research Theme

At Deele College, we aim to develop students who engage purposefully in meaningful learning activities. We are putting particular emphasis on improving students' level of interest and participation in all curriculum areas, including Maths. Also, we want our teachers to select and use teaching approaches appropriate to relevant learning intentions and students' learning needs.

As a Mathematics Department we will actively support the achievement of these standards in the following ways:

- (a) by delivering creative and effective instruction which is directed at encouraging deep student engagement through various methodologies.
- (b) by promoting interactions among students and teachers which are respectful and conducive to positive attitudes to Maths.
- (c) by encouraging students to contribute their opinions and experiences to class discussions with confidence.
- (d) by valuing students asking questions and suggesting possible solutions confidently and safely, and getting them to see all responses, correct or incorrect, as learning opportunities.
- (e) by developing in students higher levels of motivation, resulting in them getting enjoyment from engaging and persisting with increasingly challenging work.
- (f) by enabling teachers to use a range of questioning techniques effectively for a variety of purposes including stimulating substantial student responses and extending learning beyond the lesson.
- (g) by meaningfully differentiating content and activities to challenge all students.
- (h) by providing opportunities to teachers to plan collaboratively learning experiences that enable and empower students to see learning as a holistic and lifelong endeavour.

Background & Rationale

School Self Evaluation (SSE) and DEIS in Deele College have specified a number of aims for 2022-2023. In relation to Maths, one aim is to improve student attitudes in Maths, and to develop effective student-centred methodologies to this end. We regularly survey students to gauge attitudes to Maths, with the aim of improving perceptions. We want to develop more positive answers when students rate their opinions on statements such as "I am good at school Maths"; "When I solve problems, I think of different ways to solve them"; "When a solution is reached, I am able to explain clearly to others how I solved the problem". Our work here will specifically target development of the skills of multiple approaches to problems and clear communication of solutions.

We are looking to develop students' understanding of student-friendly success criteria and how features of quality in CBAs can inform their work. Improving attitudes and perceptions of ability in Maths is part of the numeracy targets in our overall school DEIS Plan. In this Lesson Study we also plan to work on Digital Literacy skills. We will look to incorporate IT in constructive and purposeful ways.

In common with most schools, and as is clear from SEC examiner reports, teachers in Deele College have identified students regularly having problems with understanding and applying formulae. Ordinary and Foundation Level students have particular difficulties. This sometimes baffles teachers, who think of formula use as straightforward until they encounter reality in the classroom. Our students seem to lack confidence in dealing with basic algebraic techniques. In a survey of students on attitudes to Maths that Forbairt conducted, difficulties with algebra emerged as one of the main negative contributors to a lack of enjoyment of our subject. One aim in this lesson, as part of the overall unit, is to give students time to explore various approaches to developing, understanding and applying formulae. We want students to initially develop a specific formula (the surface area of a cylinder) using nets, scaled diagrams, physical models and possibly other resources such as appropriate IT. Through this development of the formula we anticipate a better understanding of exactly what the formula is, and the significance of dimensions and units. We then hope to facilitate better use of the formula for the surface area of a cylinder. We want students to get a sense of the power and effectiveness of formulae. Use of formulae is a skill which must be developed. This Lesson Study class will be a task of manageable proportions to give teachers and students useful insights.

Students must develop confidence and certainty in basic algebraic methods applied to simple situations. They must learn to apply a variety of approaches and methodologies. Furthermore, students need an understanding of the basis of these procedures, particularly how various elements of all strands connect with each other, as well as links to other areas of learning. If students cannot refer back to these links between elements that may have been introduced to them separately, then they will struggle to get the full benefit of Maths in general. They will also miss an essential purpose of our Maths course which looks for comprehensive understanding. We want pupils not only to carry out these investigations, but to find links with other aspects of the curriculum.

Relationship of the Unit to the Syllabus		
Prior Learning	Current Learning	Future Learning
U.2 Apply the procedures	3.4 Length, Area and	3.3 Arithmetic
associated with each strand accurately, effectively, and appropriately	Volume 2D shapes and 3D solids, including nets of solids	Check a result by considering whether it is of the right order of
U.4 Represent a mathematical situation in a variety of different ways,	Using nets to analyse figures and to distinguish between surface area and volume	magnitude and by working the problem backwards; round off a result
algebraically, graphically, physically, in words; and	Problems involving perimeter, surface area and volume	Accumulate error (by addition or subtraction only)
compare such representations	Modelling real-world situations and solving a	Make and justify estimates and
U.5 Make connections within and between	variety of problems (including multi-step	calculations;
strands	surface areas, and	error and tolerance
U.6 Make connections between mathematics	volumes of cylinders and	
and the real world	rectangular solids	3.4 Length, Area and
U.7 Make sense of a	rectangular solids and	Volume
given problem, and if necessary mathematise a	cylinders	Use the trapezoidal rule to approximate area
situation	Select and use suitable	
U.8 Apply their knowledge and skills to solve a	the perimeter and the area of the following	4.2 Rearrange formulae

problem, including	plane figures: disc,	5.1 Functions
decomposing it into manageable parts and/or simplifying it using appropriate assumptions	triangle, rectangle, square, and figures made from combinations of these	 recognise that a function assigns a unique output to a given input
 U.9 Interpret their solution to a problem in terms of the original question U.10 Evaluate different possible solutions to a problem, including evaluating the reasonableness of the solutions, and exploring possible improvements and/or limitations of the activitized (if any) 	Select and use suitable strategies to estimate the area of a combination of regular and irregular shapes Select and use suitable strategies to find the volume and surface area of rectangular solids, cylinders and spheres Draw and interpret scaled	 form composite functions graph functions of the form ax+b where a,b ∈ Q, x ∈ R find the roots and turning points of functions graph functions of the form
U.13 Communicate mathematics effectively: justify their reasoning, interpret their results,	diagrams Investigate the nets of prisms, cylinders and cones Solve problems involving	a,b,c \in Q, x \in R 5.2 calculus – find first and second
explain their conclusions, and use the language and notation of mathematics to express mathematical ideas precisely	the length of the perimeter and the area of plane figures: disc, triangle, rectangle, square, parallelogram	derivatives of linear, quadratic and cubic functions by rule – associate derivatives with slopes and tangent lines
GT.1 Calculate, interpret, and apply units of measure and time	trapezium, sectors of discs, and figures made from combinations of	 apply differentiation to rates of change maxima and minima
GT.2 Investigate 2D shapes and 3D solids so that they can:	these Solve problems involving surface area and volume	curve sketching
a. draw and interpret scaled diagrams	of the following solid figures: rectangular block,	
b. draw and interpret nets of rectangular solids, prisms (polygonal bases), cylinders	cylinder, right cone, triangular-based prism (right angle, isosceles and equilateral), sphere, hemisphere, and solids	
o. mu tre permeter anu	made from combinations	

area of plane figures made from combinations of discs, triangles and rectangles, including relevant operations involving π	of these	
d. find the volume of rectangular solids, cylinders, triangular-based prisms, spheres, and combinations of these, including relevant operations involving π		
e. find the surface area and curved surface area (as appropriate) of rectangular solids; also at Higher Level the surface area and curved surface area cylinders, triangular-based prisms, spheres, and combinations of these		
AF.2 Investigate situations in which letters stand for quantities that are variable so that they can:		
a. generate and interpret expressions in which letters stand for numbers		
b. find the value of expressions given the value of the variables		

Goals of the Unit

- Students will derive, understand and use formulae of measure.
- Students will demonstrate clarity on the meaning of and distinctions between length, perimeter, circumference, area, total surface area, curved surface area, nets, volume and capacity.
- Students will apply various approaches, interpret results, explain findings and justify conclusions.
- Students will apply their knowledge and skills to solve problems in familiar and unfamiliar contexts.
- Students will evaluate the appropriateness, benefits and drawbacks of each approach.
- Students will make use of suitable IT where appropriate.
- Students will develop confidence in communicating the ideas underpinning their work verbally and in written form.
- Students will be encouraged to extend these ideas to further scenarios.
- Students will reflect on the outcome of their work, looking at what went well and at what they may wish to improve in the future.

Unit Plan	
Lesson	Brief overview of lessons in the unit
1.	Units of Measurement
	Area and Perimeter of Square, Rectangle
2&3	Area and Perimeter of Triangle, Parallelogram, Trapezium
4.	Area and Perimeter of Compound Shapes
5.	Net of a Cube - Surface Area and Volume; Scaled Diagrams
6.	Net of a Cuboid - Surface Area and Volume
7.	Net of a Cylinder - Surface Area
Research	
Lesson	
8.	Volume of a Cylinder
9.	Sphere and Hemisphere – Surface Area and Volume
10.	Cone – Surface Area and Volume
11.	Trapezoidal Rule

Goals of the Lesson

a) Mathematical Goals

- Students will explore properties of 3-dimensional shapes.
- Students will attempt to generalise propositions, conjectures, outcomes and

results.

- Students will become aware of the possibility of using nets of 3-d figures to develop formulae on area.
- Students will use nets to understand how formulae are derived.
- Students will begin to appreciate the benefits and potential of using formulae.
- Students will learn to use appropriate formulae correctly.
- Students will look to make connections between various approaches.
- Students will communicate their learning effectively.

b) Key Skills and Statements of Learning

This lesson will promote Key Skills in the following ways:

- Being numerate: seeing patterns, trends, relationships and the significance of generalisation; gathering, interpreting and representing data; developing a positive disposition towards investigating, reasoning and problem-solving.
- Being literate: expressing ideas clearly and accurately.
- Managing myself: students will have the opportunity to reflect on their own learning.
- Communicating: students will present, explain, justify and discuss their mathematical thinking on measure.
- Being creative: students will be encouraged to explore options and alternatives and will actively participate in creative learning.
- Working with others: students will cooperate and will learn with and from each other.
- Managing information and thinking: measuring dimensions and applying them to formulae; becoming aware of units of measure; students will be encouraged to be curious, to think creatively and critically, and to reflect on and evaluate their learning.

Flow of the Lesson		
Timing, activities, steps,	Teacher support,	Assessment, questions,
resources, problems	activity	comments, strategies
Introduction		
To start proceedings the	At the start of the class	Use nets (plans),
teacher will introduce any	the teacher will divide the	exploded views.
guests and observers and	class into pairs at tables,	
will emphasise to	ensuring differentiated	Provide cylindrical objects
students that class will be	levels of student abilities	such as Pringles boxes,
conducted as normal.	within each group.	toilet rolls, etc., to enable
The teacher will briefly		physical dismantling or
explain the role of the	The teacher will discuss	

observer (observing work,	homework as a basis for	decomposition of a
gathering information,	today's work.	cylinder.
taking photos as a record		
of work, etc.).	We want to be certain that	Prepare and practice
	students understand	relevant terminology in
The teacher begins by	basic ideas and terms	advance.
presenting the learning	associated with	
objectives of the lesson:	investigation of measure	Differentiation - we hope
	of 2-d and 3-d shapes.	to get to the point where
Students will		stronger students can be
explore the area of	We need to use effective	asked to explain clearly
the surfaces of a	questioning to ascertain	the derivation of formulae.
cylinder and	students' prior knowledge.	
formulate and		Check diagrams the day
apply various		before the live class
approaches. In		(students often struggle
particular, students		with scaled diagrams,
will try to develop a		accurate drawings, units
general formula for		of measure, correct use of
finding the total		geometry equipment).
surface area of a		
cylinder. Students		Can students express to a
will then interpret		reasonable level what
any results, explain		they know about the
findings and justify		properties of a cylinder?
conclusions.		
		Are students clear on the
The class has been		concept of surface areas
working in previous		of 3-d shapes?
classes on finding		
lengths, areas and		Are students clear on the
volumes of various		concept of nets of 3-d
shapes, either by		shapes?
formulae or modelling. An		
initial examination of a		Are students clear on the
cylinder was presented		distinction between
as the previous night's		curved surface area and
homework. This gave the		total surface area, where
students an opportunity to		relevant?
consider the problem and		
to start to formulate		Do students understand
solutions. It also gives the		how to calculate lengths

opportunity at the start of		and areas of surfaces of
the research lesson for		various sizes?
the teacher and students		
to clarify any uncertainty		Are students clear on the
about what is being asked		various possible
in the problem.		approaches?
'Before we start today's		
lesson, did you notice any		
interesting facts about the		
properties of a cylinder?'		
Did you put any thought		
into how to identify		
important features		
associated with the		
measure of cylinders?'		
What would we like or		
need to know about the		
dimensions of a cylinder		
to be able to draw the		
net?'		
'Have you thought about		
how we could analyse the		
surface area of a		
cylinder?'		
'What might help us break		
down the surfaces of a		
cylinder to find the overall		
surface area?'		
Posing the task		
Each student in the class	Teacher ensures clarity	Ask brief questions to
will have had a chance to	for all students on what	make sure everyone
take a preliminary look at	they are being asked to	understands the problem
a cylinder. Each student	do.	to solve and the
will be assigned the same		desirability of different
cylinder to work on with		types of approaches.
dimensions diameter of		
5cm and height 6cm.		
Students will work		
individually for 10		

in groups of 4) for 15 minutes The students' task will be to calculate, organise, and analyse the areas of surfaces of the cylinder. They will also be asked to justify their conclusions. Students will be encouraged to look at the potential benefits of developing an appropriate formula if possible, based on their concrete examination of the problem.

'Now I would like each student to look at one cylinder along the lines of our homework last night. You are asked to find the total surface area of the given cylinder. You will work individually for 10 minutes, then as a pair for a further 15 minutes. on this problem. Calculate areas of surfaces of a cylinder with diameter 5cm and height 6cm as in the diagram on your desk. Whatever way you look at the problem, you are required to draw a net of the cylinder at some stage. How could you find the total surface area of any cylinder? i.e. can you develop a formula?

When we have looked at		
the problem. I will ask a		
number of you to come		
to the board to outline		
vour answers, explain		
your ideas and to take		
some questions from		
the class.'		
Student Individual Work		
[10 minutes] and		
Collaborative Pair Work		
[15 minutes]		
Student Response 1	Use teacher's seating	As teacher walks around
Draws an inaccurate net	chart (or equivalent on	classroom, are students
(wrong shape).	Lesson Note app on iPad)	able to meaningfully
	to record the approach	engage with the problem?
Student Response 2	used by each student and	
Draws net inaccurately by	each pair. Note the order	Can students
measurement which does	in which you will call a	demonstrate an ability to
not fit	representative from each	look at the problem in
	pair to the board during	different ways?
Student Response 3	Ceardaíocht based on	
Draws accurate net from	increasing sophistication	Where necessary
physical measurement	of each pair's work	encourage physical
only		dismantling of cylinders to
	The aim will be to have a	explore their dimensions
Student Response 4	student or pair come to	surfaces and other
Draws accurate net	the board to outline and	properties
connecting the length of	explain examples of any	
the rectangle surface	type of approach to	Where necessary
(curved surface of the	producing a solution	suggest approaches such
cylinder) to the		as rolling out cylinders
circumference of the base	Observers will use the	tracing or tracking paper
circle		e a label of tin roll of
	designed by the group of	kitchen naner
Student Response 5	teachers (see Annendix	
Constructs accurate net	1) to gather and record	Can students develop
and works out the curved	relevant data Observers	multiple solutions?
surface area using this	must he clear on their	
not	tasks (watching progress	Are students identifying
	listening to conversations	key features of organising
	insterning to conversations,	rey reatures or organising

Student Response 6	recording evidence of	strategies for solving the
Constructs accurate nets	progress and points of	problem?
and works out the total	interest).	
surface area by adding		What limitations may
the areas.	Observers should be	apply to different
	particularly looking to	approaches to solving the
Student Response 7	record evidence of	problem?
Constructs accurate net,	moments when key	
works out the total	learning occurs.	What strengths and
surface area and	5	weaknesses does each
generalises to find the	If students are having	proposed solution have?
formula for total surface	difficulties the teacher	Do any approaches have
area of a cylinder. Then	may guide them by asking	so many advantages that
uses this formula	appropriate questions	we may wish to focus on
correctly		them in future?
concerty.	Students or arouns may	
	struggle to see different	Why are some
	nossible approaches. The	approaches more useful
	teacher may gently guide	than others?
	them towards approaches	
	that are not occurring to	By identifying key
	them offer a period of	by identifying key
	them after a period of	reatures in each
	time. we expect that this	approach, could solutions
	may occur when breaking	nave wider applications?
	down the surfaces. The	Can we develop a general
	teacher will look out for	solution, such as a
	this, and may offer some	formula?
	initial help such as	
	indicating how a concrete	
	model may be used.	
	During the "Ceardaíocht"	
	phase discussion,	
	students will be asked to	
	comment, reflect and	
	elaborate on what other	
	students say. The teacher	
	will use this and other	
	strategies to ensure that	
	all students remain	
	engaged.	
	The teacher will look out	

	for opportunities to use	
	student errors or	
	misconceptions to	
	consider and analyse	
	common difficulties	
	among students. After 10	
	minutes of individual	
	work, the teacher will ask	
	students to work in pairs.	
	The aim of the pair or	
	group work is to debate	
	the various approaches	
	offered and to enable	
	effective communication.	
	I his pair work almost	
	serves as a	
Coordofoolot (Commonium	pre-Ceardalocht.	
ceardalocht /comparing		
minutos		
mmutesj		
As students or groups are	It is a central component	Can each student clearly
developing solutions, if it	of the whole Lesson	explain his/her approach
becomes apparent that	Study process that, when	to solving the problem
some of the above	students are presenting	when up at the board?
approaches are not	solutions at the board,	
emanating from any	they must communicate	Can each student justify
student or group, the	verbally with the teacher	elements of his/her
teacher may hint at or	and the class. The	solution and communicate
give some basic guidance	teacher must ensure this.	this effectively?
towards considering	Appropriate comments or	
them.	questions may be helpful.	Can students express an
		understanding of
The teacher must ask	Write any student	solutions developed by
questions of the presenter	answers and predictions	others?
and of other students, to	on the board.	
try to ascertain levels of		Do students recognise
understanding of key	If there is enough time,	similarities or differences
elements of solutions.	the teacher could employ	between their own
	Solid Works or Geogebra	approach and that
It is important that the	to expand on various	presented on the board?
whole class is engaged	forms of analysis.	

Abside un hadrat Strategiere Matters

and that students understand they may be called on at any stage to reflect on what another student said. The teacher must keep in mind that clear student communication and understanding are goals of the lesson.

In keeping with the goals of the lesson, teacher questioning will focus on the most important elements of proposed solutions, as well as how students worked. For example, "How does the size of the cylinder affect your approach to investigating it?"; "When the curved surface is 'rolled out', what shape is it?"; How could you find the circumference of the base circle of the cylinder?"; "It's an area problem - why are we bothered with the circumference of the base circle?": "What connection is there between the base circle and the curved surface?"; "How did you find this result?"; "Could anyone suggest another approach in this case?"; "Did anyone else get a similar result?"; "Is this the best strategy?"; "Explain the meaning or

At the Ceardaíocht stage it is important to keep in mind the goals of the lesson. The focus of the teacher's questioning and direction of the discussion should be guided by these goals.

Students may need to be reminded that a major goal of the lesson is to examine the problem in a variety of ways, not just to find a solution. This also allows for differentiated work, allowing stronger students to be challenged while weaker students can maintain confidence in their work.

For each anticipated student response the teacher (in conjunction with the full Lesson Study group) will have prepared a basic initial position (typically an appropriate diagram) as a starting point for the student to build on and develop his/her solution on the board.

When a student presents work on a board, make sure to attach his/her name (or a group's name) to it. Do students offer alternative approaches to solving the problem?

What major misconceptions or errors are arising as discussion of solutions is proceeding?

If a solution does not work out, can students see exactly where the problem arose?

significance of this	Ask other students to
result."; "Would you prefer	raise their hands if they
a physical or formulaic	used the same method.
approach here?"; "Why?";	
"Why are you looking at a	When each anticipated
lot of examples?".	solution has been
	presented and discussed,
Teacher will pay attention	ask did anybody use a
to the use of π . Are	different approach.
students clear on how to	
use calculator when	The teacher should use
dealing with π ? What is	any opportunity in the
the advantage of giving	discussion to introduce
answer "in terms of π " or	terminology, e.g.
approximating?	dimensions, length and
	circumference, circle,
The teacher should	disc, surface, edge,
highlight comparable and	prism, surface area, net,
different features in	curved surface area,
various solutions. For	volume, capacity, units of
example, "Can anyone	measurement,
see any similarities or	approximation, error and
differences between the	tolerance, etc.
outcomes for various	
examples or various	From past experience we
cylinder sizes?"; "What	have found that students
does the outcome tell	have difficulty
us?"; "Compare and	communicating with the
contrast the differences	class when they are
we have found."; "Were	presenting solutions at
you surprised by any	the board. They often
result?"; "Is that a	"talk to the board", or
coincidence, or do you	don't talk at all. The
feel it happens all the	teacher must ensure that
time?".	presenters engage clearly
Teacher questioning	with the class.
should lead debate on	
interesting features,	
merits or misconceptions	
of solutions.	
When all solutions have	

been presented, the		
teacher may pose the		
question "Was any		
solution particularly good		
or interesting or		
surprising? Why?". The		
teacher could also ask		
students to consider if the		
comparisons between		
solutions may apply		
generally to analysis of		
the situation.		
To finish the Ceardaíocht		
stage, the teacher will ask		
students to move around		
classroom on a "one stay		
rest stray" basis, i.e. one		
student from each group		
will remain at his/her table		
to answer any questions,		
while the other students		
move around to look		
briefly at the work of		
others.		
Summing up &		
Reflection	Teacher must explicitly	Are responses too
Teacher will use	ask students to give	general, or do they show
Mentimeter to ask	specific, detailed	evidence of progress in
students to write down	comments.	the main aims of the
any major thing they		lesson?
learned in class. [Padlet a		
possibility here too].		

Evaluation of Lesson

In general we were happy that the lesson went well and most of our aims were reasonably well achieved. Our main focus was to look at how students could move from concrete work to creating an appropriate formula. This would help understanding of and correct use of the formulae associated with a cylinder. This has often been surprisingly difficult for students. We wanted to study how they went about measure and where particular difficulties arose.

Preparation in advance helped the lesson to flow well and the activities prepared did enable the students to get to grips with the problem physically, numerically and algebraically. We felt in previous years that we perhaps tried to cover too much in the class and we therefore limited the task. We wanted to keep our central focus. Differentiation of work is something we must consider in Lesson Study and indeed in our work in general. Concrete models and drawing of diagrams helped weaker students to get a foothold in the problem. The use of foldable shapes and items like toilet rolls made deriving relevant formulae, and correct use of these, more likely. Students were able to move from the specific cylinder in this lesson to general formulae. The strongest students sometimes had the work done quickly here and could have spent the time after that on some extension of the problem. This could have involved activities such as dealing with an open cylinder, other shapes or real-life examples. Although it was a priority they think in-depth about the main problem, we could try and plan for some extended activities too. On the opposite side, sometimes weaker students check out of the problem entirely if they feel that they're in trouble and they may lack confidence. Once again, we need to consider carefully how we can address this. Concrete aids helped these students to feel more able to engage. One type of model we didn't emphasise, that may have given another perspective to students, would be to cut out the net and try to make the 3-dimensional shape. The dimensions we chose for our cylinder were to enable the net to fit on an A4 page. We possibly could have considered using a larger net on A3 or A2 paper. This would require larger compasses than the standard maths set model, but may give more clarity.

In previous rounds of Lesson Study we felt that setting up the students to work in pairs was better than working in groups of four. In pairs everybody had to engage, whereas in groups of four weaker or less confident students can sometimes stop working and contribute less. However, this year, pairs of students gravitated to wider discussions around their tables of four, and this was quite productive.

21

A lesson we learnt previously was that we must take care in selecting pairs or groups rather than allowing the students to select pairs themselves. We made an effort to mix stronger and weaker students. We find that weaker students can learn

from the stronger ones and stronger students themselves can benefit from teaching and therefore really understanding the solutions in depth.

From previous Lesson Study work we found that students when brought up to the board will write the answer without communicating or explaining if they are not encouraged to do so. Therefore when preparing the lesson we placed particular emphasis on the need for the students to communicate and explain their work when at the board. This was the basis of discussions on the solutions. The teacher took particular care to ensure that this happened and it worked well to the point where classmates were interacting and asking useful questions seeking further explanation from the person at the board. Most students seem to enjoy their time at the board. This was very positive. In the feedback we found that students said that they liked it.

We anticipated only a small number of substantially different solutions from the students, and this proved to be the case. In hindsight we could have modified our boardwork to ensure students wrote everything large enough, and in clear marker, to be more clearly visible to everyone in the classroom.

The teacher felt after the lesson that perhaps she could have sought feedback at different stages of the class, rather than at the Ceardaíocht stage only. We might look at this in future. It was very productive to give adequate time to students to explore and deal with difficulties and misunderstandings. They made their own progress. More time is also needed for discussion of potential solutions at the board. We should accept slow or very little progress, as long as there is productive thinking. There is a time for the teacher to intervene, but perhaps more slowly and mainly to help undo some fundamental confusion. We were satisfied that the teacher got the balance reasonably well here. Students taking a wrong path is not a bad thing and can be very useful but we don't want students to be very confused in basic ideas.

In previous years' Lesson Studies we felt we did not devote enough time to the importance of the observation of students' work. This year we focussed more on this. We discussed exactly what each observer should be doing and what they should be looking out for. We watched how the students progressed through the problem, looking for the key moments in their discussions where development and understanding occurred and gathering evidence to demonstrate these steps. As always the students provided a number of very interesting moments in the class. The blue foldable model led to a lot of productive debate on accurately developing the net of the cylinder.

One student used the toilet roll to explain to her group how she saw the net, and how to link the measurements of the 3-dimensional shape to the dimensions of the 2-dimensional net. This was very interesting and creative.

While most students made the connection between the circumference of the base circle and the length of the rectangle in the net, a number of difficulties arose consistently. Firstly, getting the correct measurement of this length proved surprisingly challenging for many.

Secondly, a small number of students placed the circles in incorrect positions in the net.

Finally, and most commonly, students frequently struggled to use a compass properly, to draw properly measured diagrams or to deal accurately with units of

measure. For good 5th Year Ordinary Level students this was surprising. Handling π also needs to be practised. Teachers observing felt that they would incorporate these problems into their work in future.

We used a camera to show the question being done at the board more clearly to the students in the classroom. This had the drawback of making student solutions on the board seem slightly less visible.

Mentimeter

18

Lesson Study

Another possible use of IT would be to use Lesson Note to keep precise track of exactly how much time is being spent on each activity. For example, for how much time is the teacher talking, how much time has been spent at the board, how much time has been spent with class interaction and questioning while working on the board. Use of Mentimeter to get student feedback at the end worked well, although we could put a bit more thought into exactly what questions we could ask in this feedback to get the best possible data. Feedback from the students was generally positive. They enjoyed the class. They specifically enjoyed the interaction between the class and the person at the board and the communication. Almost all felt that they had learnt something from the lesson, whether it was getting an understanding of the net of a cylinder, finding some elements of the surface areas or deriving parts or all of the required formula for the total surface area of a cylinder. In future planning, we must ensure enough time is given to the feedback stage. Also we must ask students to be specific about what they felt they learned, not just offering generalities. Students need help to develop this skill.

What key learning will you take from today?

remembering formulas check formula is right finding circumference check more than twice working as a team finding a formula cylinders pie area making formulas oroblem solvina circumference teamwork ō formula making a formula problem solving skills concentration examples aren't accurate

Summary of Key Learning		
Point 1	We must emphasize the importance of observing how students	
	move through a problem, looking for the key moments in their	
	discussions where development and understanding occur and	
	gathering hard evidence to demonstrate these steps. Otherwise we	
	cannot adequately assess their progress and give feedback.	
Point 2	We should plan to give adequate time for the students to explore	
	and fail before they can make their own progress. More time is also	
	needed for discussion of potential solutions. We should accept slow	
	or very little progress, as long as there is productive thinking.	
Point 3	Directly and explicitly linking suitable concrete models to essentially	
	algebraic formula work has the potential to help students to	
	understand scenarios more deeply. This type of work could form the	
	basis of better formula use, which many students find tricky.	
Point 4	Differentiation of work is something we must consider in Lesson	
	Study and in our work in general.	
Point 5	We must practice the use of geometric equipment and the drawing	
	of accurate scaled diagrams thoroughly. These are real weaknesses	
	in students.	

Final Reflection

In Deele College Maths Department we continue to find Lesson Study a valuable process. It gives us a chance to meet and talk about issues around our teaching methods and how our students learn. The most enjoyable and productive part of the experience was informally sharing ideas and making suggestions to each other. Every year we take part in Lesson Study we learn new things. We see areas of strength and areas to improve. Without exception, every year we have our eyes opened by our students, who offer new creative ideas that may not have occurred to us. As a collective department we benefit hugely from Lesson Study. A final thanks for all the support from the PDST, which helps us get the most we can from the process, and from the management in our school who wholeheartedly back us and see the benefits for teaching and learning.

<u>APPENDIX 1</u>

Observation Template

Observation Template

School: Deele College Raphoe

Title of Lesson: Explain That Formula

Date:

Introduction and Prior Knowledge	
Posing the Task	
Student Individual Work	 What methods did the students use to solve the problem? How well did students manage their work and develop strategies? Did each student develop at least one approach? Did students explain reasoning behind choices? Were any anticipated solutions not used? What comments or questions did the students have? Did students show a good ability to organise work? Were students able to move from one approach to another and, if so, how independently of the teacher? To what extent were students able to use various approaches and link them? What were the common misconceptions and misunderstandings?

Collaborative Paired Work	 How and when did students' understanding change? Did any students demonstrate a continued lack of understanding or progress? How could this be addressed? How well did students collaborate at paired work stage? How successful was differentiation of students' work?
Unexpected Outcomes	 Did students develop any solutions or ideas that had not been anticipated?
Ceardaíocht	 Did the students' presentation and discussion promote their thinking and learning? How well did students communicate solutions and answers during discussions at the Ceardaíocht stage? Did students critically compare approaches or evaluate appropriateness of using different types of strategies? Did students demonstrate an understanding of solutions developed by other students?
Extending Students' Learning	
Summing Up	 Were the goals and research theme of the lesson met? What did students learn? What teacher approaches worked well? What teacher approaches did not work well? Was time used well? How can we improve our approaches and methodologies?

Student Reflection and Feedback	
Evaluation	 To what extent were students able to use various approaches and link them? What were the common misconceptions and misunderstandings? How and when did students' understanding change? Did any students demonstrate a continued lack of understanding or progress? How could this be addressed? Was the flow of the lesson coherent? Did the students display a positive disposition? Did the activities support the goals?
Other Observations	