Lesson Research Proposal for Junior Certificate Functions

For the lesson on 9/2/17
At St. Aloysius's School, Katie O'Donovan's class
Instructor: Katie O’Donovan
Lesson plan developed by: Katie O'Donovan and Larry Rigney

1. Title of the Lesson: Justifying Your Thinking
2. Brief description of the lesson

Students are presented with an open-ended question that incorporates a real world graph. The students are tasked with being able to justify each of the answer'

3. Research Theme

1 - Real world uses of functions. Student's ability to use functions in a real world setting.
2 - Students should enjoy their learning, are motivated to learn and expect to achieve as learners.

4. Background \& Rationale

Students find function terminology difficult. There are also many cases where functions are used in real life.

5. Relationship of the Unit to the Syllabus

Junior Certificate Mathematics Syllabus Strand 5.1, 5.2 and 5.3

Related prior learning Outcomes	Learning outcomes for this unit	Related later learning outcomes
Students are familiar with all basic mathematical operations addition, subtraction, multiplication and division	Students can analyze information presented verbally and translate it into mathematical form	Students will learn calculus at Leaving Cert level. They will see how the slope of a line can be obtained by differentiating the function of the line. Calculus will also enable them tudents have prior experiences representing and interpreting data and using data sets to solve problems slope of a the changing
Students can engage with the a curve. concept of a function, domain, co-domain and range -	Students apply their knowledge and skills to solve problems in familiar and unfamiliar contexts	Students feel confident explaining finding and justifying conclusions
Students can make use of function notation $f(x)=, f: x$ \rightarrow, and $y=$	Students at Leaving Cert level will learn and use composite functions, where one function is operated on by another.	
Students can interpret simple	Students will study functions and graphing functions in greater depth, including cubic functions.	

graphs, plot points and lines Students can draw graphs of the following functions and interpret equations of the form $f(x)=g(x)$ as a comparison of $\begin{aligned} & f(x)=a x, \text { where } a \in \mathbf{Z} \\ & f(x)=a x+b, \text { where } a, b \in \mathbf{Z} \\ & f(x)=a x^{2}+b x+c, \text { where } a \in N ; b, c \in \mathbf{Z} ; x \in \mathbf{R} \\ & f(x)=a x^{2}+b x+c, \text { where } a, b, c \in \mathbf{Z}, \mathbf{x} \in \mathbf{R} \\ & \boldsymbol{f}(x)=a 2^{x} \text { and } f(x)=a 3^{x} \text {, where } a \in N, x \in \mathbf{R} \end{aligned}$ Students can approximate solutions where $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ and interpret the results using graphical methods Students can find the maximum and minimum values of quadratic functions from a graph Students can interpret inequalities of the form $\mathrm{f}(\mathrm{x}) \leq$ $\mathrm{g}(\mathrm{x})$ as a comparison of functions of the above form and use graphical methods to find approximate solution sets of there inequalities and interpret results Students can graph solution sets on the number line for linear inequalities in one variable		difficult inequalities, for example inequalities that involve expanding a set of brackets before solving. In the area of coordinate geometry, students will learn and use a formula to work out the area of a triangle. Students will study arithmetic in more depth, including working out a monthly compound rate of tax, given the annual equivalent rate. Through an emphasis on contexts and applications, students will gain a deeper appreciation of the use of maths and justifying their results and conclusions.

6. Goals of the Unit

- Students will be reminded of the prior knowledge associated with functions
- Students will gain confidence in applying prior knowledge of functions to justify conclusions
- Students will become familiar with recognizing functions in real life examples
- Students will understand why functions are used to describe real life examples

7. Unit Plan

Lesson	Learning goal(s) and tasks
1 The Research Lesson	Students will be presented with a problem that they will be able to solve and justify in a variety of ways
2	Justification 1: Students use the slope/steepness of the lines to justify picking one company instead of the other
3	Justification 2: Students identify the intersection of the lines and specify the exact number of units at which one company outprices the other.
4	Justification 3: As further work, students may form equations for each line and solve inequalities to demonstrate mathematically the value of units at which one company is more or less expensive than the other.

8. Goals of the Research Lesson:

- Expressing ideas mathematically
- Using number
- Discussing and debating
- Gathering, representing and interpreting data
- Exploring options and alternatives
- Thinking creatively and critically
- Estimating, predicting and calculating
- Seeing patterns, trends and relationships

1. Communicates effectively using a variety of means in a range of contexts
2. Recognizes the potential uses of mathematical knowledge, skills and understanding in all areas of learning
3.

9. Flow of the Research Lesson:

Steps, Learning Activities Teacher's Questions and Expected Student Reactions	Teacher Support	Assessment
We introduce a problem where there is a graph with two linear functions representing the cost of electricity per unit for two different companies. We ask students to look at the graph and decide which company would be best to go with.		
Introduction We introduce the task by showing the graph and then discussing what it represents.	The teacher may ask the students about the graph and what the labels on the	The teacher will ask questions to see if students understand

$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { axes mean. The teacher } \\ \text { may ask what the lines } \\ \text { represent. }\end{array} & \begin{array}{l}\text { the idea of x and y } \\ \text { axes and what each } \\ \text { interval represents } \\ \text { on each axis. } \\ \text { We want to see if }\end{array} \\ \text { students have the } \\ \text { required knowledge } \\ \text { of graphs for us to } \\ \text { be able to continue }\end{array}\right]$

When you are working as a consultant you will need to be able to justify your conclusions to your client. Frequently in Math you are going to be asked to justify your answer, it's a regular thing, and these are just some of the methods we have come up with so far.

10. Board Plan

11. Evaluation

The lesson was too rushed, there wasn't enough time to do the boardwork as we would have liked. It would probably work a lot more smoothly in a double class, or perhaps an hour long class. The students really did understand the concept of having to justify their findings, which is fantastic. We noticed that the students did start working in pairs on the problem, but we found this was helping them explain their justifications and as such helped the class achieve its goals.

12. Reflection

It was great that the students really needed minimal prompting to approach from different perspectives, we found that the boardwork really helped the students see that a problem can have multiple solutions.

