Lesson Research Proposal for Junior Certificate Functions

For the lesson on 9/2/17 At St. Aloysius's School, Katie O'Donovan's class Instructor: Katie O'Donovan Lesson plan developed by: Katie O'Donovan and Larry Rigney

1. Title of the Lesson: Justifying Your Thinking

2. Brief description of the lesson

Students are presented with an open-ended question that incorporates a real world graph. The students are tasked with being able to justify each of the answer'

3. Research Theme

- 1 Real world uses of functions. Student's ability to use functions in a real world setting.
- 2 Students should enjoy their learning, are motivated to learn and expect to achieve as learners.

4. Background & Rationale

Students find function terminology difficult. There are also many cases where functions are used in real life.

5. Relationship of the Unit to the Syllabus

Junior Certificate Mathematics Syllabus Strand 5.1, 5.2 and 5.3

Related prior learning	Learning outcomes for this	Related later learning
Students are familiar with all basic mathematical operations addition, subtraction, multiplication and division	Students can analyze information presented verbally and translate it into mathematical form	Students will learn calculus at Leaving Cert level. They will see how the slope of a line can be obtained by differentiating the function of the line.
Students have prior experiences representing and interpreting data and using data sets to solve problems	Students apply their knowledge and skills to solve problems in familiar and unfamiliar contexts	Calculus will also enable them to work out the changing slope of a tangent to a curve. Students at Leaving Cert level
Students can engage with the concept of a function, domain, co-domain and range –	Students feel confident explaining finding and justifying conclusions	will learn and use composite functions, where one function is operated on by another.
Students can make use of function notation $f(x) = , f:x \rightarrow$, and $y =$		Students will study functions and graphing functions in greater depth, including cubic functions.
Students can interpret simple		Students will study more

graphs, plot points and lines	difficult inequalities, for
	example inequalities that
Students can draw graphs of	involve expanding a set of
the following functions and	brackets before solving.
interpret equations of the form $f(x) = g(x)$ as a communication of	In the area of accordinate
f(x) = g(x) as a comparison of	In the area of coordinate
$f(x) = ax$, where $a \in \mathbf{Z}$	and use a formula to work out
$f(x) = ax + b$, where $a, b \in \mathbf{Z}$	the area of a triangle.
$f(x) = ax^2 + bx + c$, where $a \in \mathbf{N}$; $b, c \in \mathbf{Z}$; $x \in \mathbf{R}$	e
$f(x) = ax^2 + bx + c$, where $a, b, c \in \mathbb{Z}$, $x \in \mathbb{R}$	Students will study arithmetic
$f(x) = a2^x$ and $f(x) = a3^x$, where $a \in \mathbb{N}$, $x \in \mathbb{R}$	in more depth, including
	working out a monthly
Students can approximate	compound rate of tax, given
solutions where $f(x) = g(x)$	the annual equivalent rate.
and interpret the results using	
graphical methods	Through an emphasis on
	contexts and applications,
Students can find the	students will gain a deeper
maximum and minimum	appreciation of the use of
values of quadratic functions	maths and justifying their
from a graph	results and conclusions.
Students can interpret	
inequalities of the form $f(x) <$	
g(x) as a comparison of	
functions of the above form	
and use graphical methods to	
find approximate solution sets	
of there inequalities and	
interpret results	
-	
Students can graph solution	
sets on the number line for	
linear inequalities in one	
variable	

6. Goals of the Unit

- Students will be reminded of the prior knowledge associated with functions
- Students will gain confidence in applying prior knowledge of functions to justify conclusions
- Students will become familiar with recognizing functions in real life examples
- Students will understand why functions are used to describe real life examples

7. Unit Plan

Lesson	Learning goal(s) and tasks
1	Students will be presented with a problem that they will be able to solve and
The Research	justify in a variety of ways
Lesson	
2	Justification 1: Students use the slope/steepness of the lines to justify picking one
	company instead of the other
3	Justification 2: Students identify the intersection of the lines and specify the exact
	number of units at which one company outprices the other.
4	Justification 3: As further work, students may form equations for each line and
	solve inequalities to demonstrate mathematically the value of units at which one
	company is more or less expensive than the other.

8. Goals of the Research Lesson:

- Expressing ideas mathematically
- Using number
- Discussing and debating
- Gathering, representing and interpreting data
- Exploring options and alternatives
- Thinking creatively and critically
- Estimating, predicting and calculating
- Seeing patterns, trends and relationships
 - 1. Communicates effectively using a variety of means in a range of contexts
 - 2. Recognizes the potential uses of mathematical knowledge, skills and understanding in all areas of learning
 - 3.

9. Flow of the Research Lesson:

Steps, Learning Activities Teacher's Ouestions and Expected Student Reactions	Teacher Support	Assessment
We introduce a problem where there is a graph with two linear functions representing the cost of electricity per unit for two different companies. We ask students to look at the graph and decide which company would be best to go with.		
Introduction We introduce the task by showing the graph and then discussing what it represents.	The teacher may ask the students about the graph and what the labels on the	The teacher will ask questions to see if students understand

	axes mean. The teacher may ask what the lines represent.	the idea of x and y axes and what each interval represents on each axis. We want to see if students have the required knowledge of graphs for us to be able to continue
Posing the Task		
We introduce a problem where there is a graph with two linear functions representing the cost of electricity per unit for two different companies. We ask students to look at the graph and decide which company would be best to go with. We expect that students will say that it depends on the number of units used. For weaker students they may base their opinion on the highest y value. We can then use the graph to write down two functions. Simultaneous equations may be used to identify the point at which the functions are the same.	Students will be provided with worksheets but the problem will also be shown on the board. Reemphasize that students will have to justify their answers as they are acting as consultants for a firm.	
Cost in €		
Which company would you recommend and why? There may be more than one answer; you must be able to justify each answer.		
Students Individual Work		
	We anticipate that a lot of	

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
$SLOPE(m) = 0.275$ $(y - y_1) = m(x - x_1)$ $(y - y_1) = m(x - x_1)$		
Ceardaíocht /Comparing and Discussing		
Response One	Check for understanding with the rest of class	
Response Two	Ensure students are using corrected language. Teacher could say, "I don't believe you that it's "steeper"".	Justify using a protractor
Response Three	What values did you get for the rise over the run?	Did anyone else in the class use different triangles to calculate this?
Response Four	Slope formula	Did anyone else in the class use different points?
Response Five	At the point of intersection the cost is the same.	What do you mean by "that's the same"
Response Six	Shaded graph	Ensure students are using the phrases "less than" or "greater than". Why is A cheaper here?
Summing up & Reflection		

When you are working as a consultant you will
need to be able to justify your conclusions to
your client. Frequently in Math you are going to
be asked to justify your answer, it's a regular
thing, and these are just some of the methods we
have come up with so far.
-

10. Board Plan

11. Evaluation

The lesson was too rushed, there wasn't enough time to do the boardwork as we would have liked. It would probably work a lot more smoothly in a double class, or perhaps an hour long class. The students really did understand the concept of having to justify their findings, which is fantastic. We noticed that the students did start working in pairs on the problem, but we found this was helping them explain their justifications and as such helped the class achieve its goals.

12. Reflection

It was great that the students really needed minimal prompting to approach from different perspectives, we found that the boardwork really helped the students see that a problem can have multiple solutions.