Lesson Research Proposal for 2nd Year Geometry

For the lesson on 25th of January 2018 At Coláiste Na Toirbhirte, Eimear White class 2nd year Lesson plan developed by: Celine Buckley, Declan Cronin, Pat O'Leary & Eimear White

1. Title of the Lesson: Plane Clothes

2. Brief description of the lesson

Combine students understanding of the links between the properties of 2D shapes (triangle) and co-ordinate geometry.

3. Research Theme

Learner outcomes – We want students to enjoy their learning, are motivated to learn, and expect to achieve as learners have the necessary knowledge and skills to understand themselves and their relationships

Teachers' collaborative practice – As teachers we want to value and engage in professional development and professional collaboration

As mathematics teachers, we will actively support the achievement of these goals by paying attention to the following entry points in my every day classes:

- Give pupils opportunities to design, present and explain their own reasoning in coming to one solution of a problem that is of relevance to the pupils
- Teachers partake in collaborative practice both informally and more formal settings such as lesson study

4. Background & Rationale

a) Why you chose the topic

We as a math's department have identified that pupils find it difficult to relate their knowledge of co-ordinate with properties of 2-D shapes. Our pupils learn a method and replicate for future problems without fully appreciating the relationships with existing knowledge and understanding.

Usually pupils do not get the opportunity to apply their knowledge of 2-D shapes to the Cartesian plane until 3rd year when they start to work through exam papers.

We hope that pupils' understanding of both topics will be improved while also giving the opportunity to look at exam type questions. As a result, we would hope to improve the confidence levels of students and their attitudes towards mathematics. We also want to facilitate different learning types in relating the physical properties of 2-D shapes and mathematical content.

b) Your research findings

As a department we teach Co-ordinate geometry at the beginning of 2^{nd} year. Some of the properties of 2-D shapes are studied at the end of 1st year (time dependent) and the rest is completed in 3^{rd} year.

Through discussions of members of the maths department we realise we currently do not explicitly make links between the two topics in enough detail. From analyzing past examination papers, we noted that several topics are inter-linked within questions with many questions relating to real life scenarios. Coordinate Geometry is taught from a procedural point of view - plotting points, slope and midpoint, equation of the line and ending with points of intersections of lines, parallel lines and perpendicular lines. We do not link back to area in geometry as it does not form part of our scheme of work.

Due to these deficits we have decided to integrate teaching co-ordinate geometry with properties of 2-D shapes using a problem-solving situation which naturally gives rise to identifying the relationships of 2-D shapes and co-ordinate geometry.

Related prior learning	Learning outcomes for this unit	Related later learning
Outcomes		outcomes
By the time students complete	In this unit of work students	There are a number of
6 th class in primary school	will revise how to:	learning outcomes in Leaving-
they should be able to:		Certificate maths which are
	• Calculate the area of a	related to student learning in
• Make informal deductions	rectangle and square	this unit. These include:
about 2-D shapes and their	• Calculate the area of a	• Applying the result of the
properties	triangle (right-angled and	Theorem of Pythagoras to
• Use angle and line	non-right-angled)	solve right-angled triangle
properties to classify and	• Calculate the area of other	problems of a simple nature
describe triangles and	quadrilaterals	

5. Relationship of the Unit to the Syllabus

ava duilatanala	- T	involving height and
quadrilaterais	• Locate points on the	involving neight and
• Use 2-D shapes and	coordinated plane	distance
properties to solve problems	• Plot points on the	• Using trigonometric ratios
• Plot simple co-ordinates	coordinated plane	to solve real world problems
and apply where	• Calculate the length of a line	involving angles
appropriate use	segment	 Solve problems involving
• geoboards and squared	• Calculate the slope of a line	the perpendicular distance
paper	segment	from a point to a line and
• Discover that the area of a	• Find the equation of a line	the angle between two lines
rectangle is length by	• Find the intersection of two	 Solve problems involving
breadth	lines	slopes of lines
• Estimate and measure the	 Identify two lines as being 	• Use slopes to show that two
area of regular and irregular	nerpendicular based on their	lines are parallel or
2-D shapes	slopes	perpendicular
• Calculate area using square	510005	• Solve problems involving a
centimetres square metres	Students will also learn how to:	line and a circle
ares and hectares	Students will also learn now to.	• Use suitable strategies to
• Decomise that the length of	• • • • • • • • • • • • • • • • • • •	find the length of the
• Recognise that the length of	• Apply the skins of	perimeter and the area of the
rectangular shape fees not	coordinate geometry to	following place figures:
determine the area of the	geometry problems	disc triangle rectangle
share	• Recognise that the	aguara and figuras mada
shape	application of algebra to	from combinations of these
• Measure the surface area of	geometry (that is the use of	
specified 3-D shapes	coordinate geometry) offers	• Select and use suitable
• Find the area of a room	increased accuracy	strategies to estimate the
from a scale plan	 Use surd relationships to 	area of a combination of
	simply numerical	regular and irregular shapes
	expressions	• Draw and interpret scaled
By the time they complete	• Use Pythagoras's Theorem	diagrams
first year in secondary school	to determine if a triangle is	
students should be able to	right-angled	
• Coordinate the plane		
• Locate points on the plane		
using coordinates		

6. Goals of the Unit

• Students will understand that some types of problems do not have a single method to find the solution, rather they have a finite (or infinite) set of solutions methods.

• Students may then apply and combine their prior knowledge of properties of 2-D shapes with co-ordinate geometry. This will increase their awareness of links between topics and expose them to exam style questions earlier in 2nd year.

7. Umt I	1411
Lesson	Learning goal(s) and tasks
1	2-D shapes- triangles
2	2-D shapes-quadrilaterals
3	Revision on co-ordinate geometry
4	The research lesson
5	Further exploration of problem solving with 2-D shapes on the Cartesian plane

7. Unit Plan

8. Goals of the Research Lesson:

a) Mathematical Goals

Students will:

- understand the concept how 2-D shapes can be analysed on the Cartesian plane
- understand the need to apply the distance formula to find the area of a triangle
- apply slope formula to verify given triangle is right angled
- the advantage of using formulas from coordinate geometry instead of using counting methods such as counting boxes, using ruler etc.
- Importance of accuracy in answers.
- b) Key Skills and Statements of Learning

In the planning and design of this lesson the Junior Cycle Key Skills and Statements of Learning have been considered. This lesson will implement and promote JC Key Skills in the following ways:

- 1. Being Literate: Students will have the opportunity to express their ideas clearly and accurately.
- 2. Being Numerate: It will develop a positive disposition towards problem solving.
- 3. Managing Myself: Student's will have the opportunity to reflect on their own learning.
- 4. Staying Well: Students' confidence and positive disposition to learning will be promoted.
- 5. Communicating: Students will present and discuss their mathematical thinking.

- 6. Being Creative: Students' will explore options and alternatives as they actively participate in the construction of knowledge.
- 7. Working with Others: Students will learn with and from each other.
- 8. Managing information and thinking: Students will be encouraged to think creatively and critically.

This lesson is also designed to meet the following JC Statements of Learning in particular:

- 1. The student communicates effectively using a variety of means in a range of contexts.
- 15. The student recognises the potential uses of mathematical knowledge, skills and understanding in all areas of learning.
- 16. The students describe, illustrates, interprets, predicts and explains patterns and relationships.
- 17. The students devises and evaluates strategies for investigating and solving problems using mathematical knowledge, reasoning and skills.
- 18. Observes and evaluates empirical events and processes and draws valid deductions and conclusions

Steps, Learning Activities	Teacher Support	Assessment
Teacher's Questions and Expected Student Reactions		
Introduction:		
To begin I will inform students of the learning intentions of	To help students to stay on task I	The use of questioning
today's lesson. We are going to use our mathematical	will write the keywords on the	will involve all students,
knowledge to solve a problem. We will try to solve the	board as they are mentioned. This	thus insuring an inclusive
problem by ourselves and then we will come together as a	will speed up the revision	classroom, while also
class to learn something new.	ensuring no repetition while also	giving the students
	building on each student's	ownership of their
	answers.	learning.
We will complete a short refresher of student's knowledge		
before they begin the problem. I intend doing this recap by		
providing the diagram from the problem. Students will be		
required to state what they see in the diagram. After this I		
will ask them what they could be asked to do, find, calculate		
on this diagram.		

9. Flow of the Research Lesson:

Posing the Task		
A clothes designer has launched a new brand of clothing.	The question and diagram will be	To make sure students
The designer's logo, a triangle, will appear on all the	given to each student on a	understand the task at
clothes she produces. This logo is outlined below. Find the	handout while also receiving a	hand they will be
area of the triangle, ABC, using a variety of methods.	free-standing triangle with the	encouraged to read the
	same dimensions as that on the	question several times.
4	coordinate plane.	The answer sheet will not
		be handed out at the same
5	The diagram will be displayed on	time to aid their
4 3 8	the board on GeoGebra while A2	comprehension and make
	copies of the diagram will be	sure they are disciplined
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	posted on the walls in the	to read before starting
-2	classroom.	task.
	Students will also receive an	
	answer sheet on which the	
	diagram also appears to aid them	
	to see the several methods to	
	solving this problem.	
Student Individual Work		
Student Response 1: "Counting boxes"	Is that the most accurate way of	Do students understand
	measuring distance/area?	that area is the number of
	Can you think of another	square units
Students Response 2: "Measurement using a ruler"	method?	Do pupils understand
	Are there more methods to	that this is an estimate
	finding the area?	Pupils use a ruler to
		measure the base and
		perpendicular heights
		and apply area of triangle
		formula
Student Response 3: "Placing the free-standing triangle on	Is this going to work for any	Do pupils understand
the origin and Axis for the measurements."	triangle or is this triangle	that the Cartesian plane
	special? Why did you use that	can be used to measure
	method? Why did that method	distance from the x and
	work? Would it work for every	y axes
	triangle?	

Student Response 4: "Distance formula to calculate the	How do you measure distance on	Pupils have correctly
lengths of the sides"	the Cartesian plane? Is there a	labeled and inserted co-
	formula for calculating distance	ordinates into the
		distance formula
Student Response 5: "Forming a rectangle with free	Can you use more than 1 of the	Pupils align free
standing triangles, calculating its area and then dividing	free triangles to help find the	triangles on x and y axes
by 2 to get area of the triangle."	area? What is the relationship	or parallel lines to read
	between this rectangle and the	off length
	triangle	C
	What is the advantage of turning	
	it into a rectangle? Are opposite	
	sides parallel and equal? Could	
	you verify this?	
	you verify unit.	
Student Response 6: "Verifying the triangle is Right	How can you check it is a right	Pupils use $m_1 \ge m_2 = -1$
Angled by calculating the slopes of the line or using a	angle/perpendicular height?	Can you use your
protractor or set-square, then proceeding to find the length	ungro porponatourar norghv.	protractor?
and area of the triangle."		productor.
Student Response 7: "Forming a rectangle by using	Is there a more accurate	Pupils have connected
coordinate D in diagram measuring sides using ruler and	mathematical method (formula)	co ordinate D to C and B
coordinate D in diagram, measuring sides using futer and	for manufing langth/distance?	forming a restangle
calculating its area, then dividing by 2 to get area of the	What is special shout as andirate	forming a rectangle
triangle."	what is special about co-ordinate	
	D	
	TT	Drugila and the C
Student Kesponse 8: Forming a rectangle, calculating its	How can perpendicular angles be	Pupils use the free
area having measured lengths of sides using formula using	verified?	triangle to verify triangle
these to find area then dividing by 2 to get area of the	Why did you move the triangle?	is perpendicular/right
triangle."	Will this transformation maintain	angled
	area?	Pupils use distance
		formula to get length of
		sides and half the answer
		states and half the answel

<u>Student Response 9:</u> "Rotating the triangle or moving it to another place on graph for it to look more apparent that it is a right-angle triangle."	Are the X and Y axes perpendicular? Are all lines parallel to X and Y axes also parallel?	Pupils have moved free triangle onto (parallel to) X and Y axes
<u>Student Response 10:</u> "Forming smaller right-angle triangles and large rectangle around ABC, calculating their areas and then subtracting the area of the triangles from the area of the rectangle."	What is the advantage of using this method? (is this a better method of a non-right angled triangle)	Pupils form a rectangle with each vertex of triangle touching side of rectangle. Sides are parallel to X and Y axes
Student response 11: Using the formula $\frac{y_2}{ x_1y_2 - x_2y_1 }$ from the log table	When is this formula/method applicable? Why is there only 2 co-ordinates in this formula when a triangle has 3 vertices/co-ordinates	Pupils have transformed the triangle with one vertex on (0,0). labelled other 2 vertices and substituted these co- ordinates into formula
Ceardaíocht /Comparing and Discussing	General- What do you think? Why is that? Did anyone else solve it the same way? Can you explain this method? Is this method accurate? Did you make any assumptions using this method? Where did you find this formula?	Pupils are engaging in the discussion Pupils are defending their methods and analyzing the merit of other methods
<u>Student Response 1:</u> "Counting boxes" <u>Student Response 2:</u> "Measurement using a ruler"	How did you count the non-full boxes? Were there any other ways of counting the non-full boxes? Is this accurate? Is this an efficient way of calculating area?	Pupils understand with shapes on a Cartesian plane it is not possible to count whole boxes Pupils accept that a mathematical solution is more accurate than a measured solution

<u>Student Response 3:</u> "Placing the free-standing triangle on the grid for the measurements."	Why did that corner of the triangle line up with x and y axes? How could you check it is a 90 degree angle?	Pupils realize that the x and y axes are perpendicular to one another Pupils recall $m_1 \ge m_2 = -1$
<u>Student Response 4:</u> "Distance formula to calculate the lengths of the sides"	Why did you choose to find the distance of these 2 sides of the triangle? What is the relationship between perpendicular distance and this angle?	Pupils will note that for the area of a triangle the height must be the perpendicular height
<u>Student Response 5:</u> "Forming a rectangle with free standing triangles, Measuring sides with a ruler and calculating its area. Then dividing by 2 to get area of the triangle."	Why did you form a rectangle? What is the relationship between this rectangle and our triangle? Are there other rectangles that could be formed from 2 of our triangles?	Pupils will see that the triangle may be doubled to form a rectangle, this will have easier to discern measurements Pupils will discuss importance of the need to verify assumptions
<u>Student Response 6:</u> "Verifying the triangle is Right Angled by calculating the slopes of the lines, then proceeding to find the length and area of the triangle."	Why is it important to verify this is 90 degrees? What way did you calculate slope? Are there other ways of calculating slope?	Pupils will offer alternate methods to calculate slope. Pupils will explain why the area of the rectangle is double the area of the triangle
Student Response 7: "Forming a rectangle by using coordinate D in diagram, calculating its area and then dividing by 2 to get area of the triangle."	How could you ensure that opposite sides and opposite angles are equal? How do you know co-ordinate D will for a regular rectangle? Can you verify this?	Pupils will agree distance formula is a more accurate way of measuring length. Can you move the triangle on the Cartesian

		plane mathematically?
Student Response 8: "Forming a rectangle, calculating its	Is this a more accurate way of	Does this correspond
area having measured lengths of sides using distance	measuring the length of the sides	with the co-ordinates
formula and then dividing by 2 to get area of the triangle."	of the rectangle?	when moved?
Student Response 9: "Rotating the triangle or moving it to	Why did you need to verify it	Pupils will discuss if the
another place on graph for it to look more apparent that it	was a right angled triangle?	main triangle needs to be
is a right-angle triangle."	What is the relationship between	a right angled triangle for
	the x and y axes?	this method to work
Student Response 10: "Forming smaller right-angle	What is the advantage to this	Pupils will be able to
triangles and large rectangle around ABC calculating	method? Did you have to verify	discuss which methods
their areas and then subtracting the area of the triangles	the triangle was a right angled	have similar approaches
from the area of the rectangle "	triangle?	nave similar approaches.
from the area of the rectangle.	Would this work for a non-right	
	analad trianala?	
	angled triangle?	
Stated area and 11. Height the ferminal	A	Denile male and a file
<u>Student response 11</u> : Using the formula	Are there any formulas in the log	Pupils make use of their
$\frac{y_2}{y_1} x_1y_2 - x_2y_1 $ from the log table	tables that could calculate area of	
	a triangle?	Pupils have attempted
	What does this formula only	translation
	have 2 co-ordinates (when a	Pupils able to relate
	triangle has 3)	answer to
		diagram/estimate/other
		solutions
Categorising approaches.	What methods have common	Pupils are able to discuss
	approaches?	what is common or
	Which are the least accurate?	different in the solutions
	Which methods are the most	
	accurate?	
Summing up & Reflection		
We learned that:	Ask pupils to comment on	Pupils are actively
	solutions?	involved in discussion on

It is	possible to combine knowledge of topics in	What is the same? What is	different methods and
ansv	vering of a problem	different?	solutions
The	re are links between topics (Co-ordinate geometry and	What methods are more	Pupils are taking
2-D	shapes)	accurate?	ownership of their
The	re are many ways to find the area of the triangle	What methods do you prefer?	learning and their work
We	should examine the question from all aspects		Pupils are
Usir	ng co-ordinate geometry is more accurate		communicating and
An	estimation is not an accurate solution		justifying the relevant
We	should attempt everything		solutions
The	importance of verifying any assumptions		
How	v to deal with varying number systems (surds vs		
deci	mals)		
The	following extension question will be used to further		
enha	ance pupil learning and understanding		
Sim	ilar methods		
<u>Esti</u>	mation		
•	Counting boxes		
•	Measurement using a ruler		
•	Placing the free-standing triangle on the grid for the		
	measurements		
•	Forming a rectangle with free standing triangles,		
	measuring sides with a ruler and calculating its area.		
	Then dividing by 2 to get area of the triangle		
•	Forming a rectangle by using coordinate D in		
	diagram, measure using ruler and calculating its area		
	and then dividing by 2 to get area of the triangle		
<u>Co-</u>	ordinate Geometry-		
•	Distance formula to calculate the lengths of the sides"		
•	Verifying the triangle is Right Angled by calculating		
	the slopes of the lines, then proceeding to find the		
	length and area of the triangle		
•	Forming a rectangle, calculating its area having		
	measured lengths of sides using distance formula and		
	then dividing by 2 to get area of the triangle		

10. Board Plan

11. Evaluation

Goals of lesson study:

- a) Give pupils opportunities to design, present and explain their own reasoning in coming to one solution of a problem that is of relevance
- Pupils enjoyed learning, motivated to learn and expect to achieve as learners
- Excellent discussion on accuracy of solutions
- Appreciation of accuracy using different methods
- Pupils have a better understanding of linking 2D shapes to co-ordinate geometry
- Pupils correctly picked and applied formulas
- Pupils presented their work visually and mathematically while discussing their methods
 - b) Students will understand that some types of problems do not have a single method to find the solution; rather they have a finite (or infinite) set of solutions methods.
- Pupils were actively engaged in coming up with solutions and requiring more paper to continue to get other methods

Student's hands up everywhere and took loads of paper

• Students may then apply and combine their prior knowledge of properties of 2-D shapes with co-ordinate geometry. This will increase their awareness of links between topics and expose them to exam style questions earlier in 2nd year

12. Reflection

a) what the team had hoped to observe during the lesson

Pupils would embrace the challenge and work hard

Pupils would come up with multiple solutions to the problem

Pupils would use their knowledge of 2-D shapes and link this with Co-ordinate geometry

b) what was actually observed during the lesson, by the team members and others;

Pupils were very relaxed and interactive and were not nervous of teachers (intimidating for pupils)

The lesson was free flowing and teacher very encouraging and was a natural sharing atmosphere and pupil knowledge was pulled out when needed

Some pupils stopped after 2 solutions

Few pupils verified triangle was right angled mathematically (most used X and Y axes or protractor)

Some tried using $\frac{1}{2} |x_1y_2 - x_2y_1|$ but applied it incorrectly

Most pupils continued to work on solutions until time was up

Some pupils were secretive about their own work

c) major points raised during the post-lesson discussion, and the team's own opinions;
Pupils slow to present methods at start of Ceardaíocht
Had to finish Ceardaíocht earlier than would have liked to ensure all methods were displayed. Did limit increased level of pupil discussion
Intimidation of many observers was discussed
Lesson was logical and structured to aid pupil problem solving
Girls came up with many of our suggested solutions