Aim: To study the properties of exponential functions and learn the features of their graphs

Section A - Activity 1: The Exponential Function, $f(x)=2^{x}$.

1. For $f(x)=2^{x}$:
(i) The base of $f(x)=2^{x}$ is
(ii) The exponent of $f(x)=2^{x}$ is
(iii) What is varying in the function $f(x)=2^{x}$?
(iv) What is constant in the function $f(x)=2^{x}$?
2. For $f(x)=2^{x}$:

What are the possible inputs i.e. values for x (the domain)?

Natural numbers	\square
Integers	\square
Rational numbers	\square

Irrational numbers
Real numbers

3. Set up a table of values and draw the graph of $f(x)=2^{x}$ on your whiteboard:

X	2^{x}	$y=f(x)$
-4	2^{-4}	$1 / 16$
-3		
-2		
-1		
0		
1		
2		
3		
4		

4. Describe the graph of $f(x)=2^{x}$:
(i) Is it a straight line?
(ii) Is $y=f(x)$ increasing or decreasing as x increases?
(iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3.

What do you notice?
\qquad
(iv) Describe how the curvature/rate of change is changing. \qquad
\qquad
5. For $f(x)=2^{x}$:
(i) What are the possible outputs (range) for $f(x)=2^{x}$.
(ii) Is it possible to have negative outputs? Explain why? \qquad
\qquad
(iii) What happens to the output as x decreases? \qquad
\qquad
(iv) Is an output of 0 possible? Why do you think this is? \qquad
\qquad
(v) What are the implications of this for the x-intercept of the graph? \qquad
\qquad
(vi) What is the y-intercept of the graph of $f(x)=2^{x}$?

Section A - Activity 2: The Exponential Function, $g(x)=3^{x}$.

1. For $g(x)=3^{x}$:
(i) The base of $g(x)=3^{x}$ is
(ii) The exponent of $g(x)=3^{x}$ is
(iii) What is varying in the function $g(x)=3^{x}$?
(iv) What is constant in the function $g(x)=3^{x}$?
2. For $g(x)=3^{x}$:

What are the possible inputs i.e. values for x (the domain)?

Irrational numbers
Real numbers

3. Set up a table of values and draw the graph of $g(x)=3^{x}$ on your whiteboard:

X	3^{x}	$y=g(x)$
-4	3^{-4}	$1 / 81$
-3		
-2		
-1		
0		
1		
2		
3		
4		

4. In relation to the graph of $g(x)=3^{x}$:
(i) Is it a straight line? \qquad
(ii) Is $y=g(x)$ increasing or decreasing as x increases?
(iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3 .

What do you notice? \qquad
\qquad
(iv) Describe how the curvature/rate of change is changing. \qquad
\qquad
5. For $g(x)=3^{x}$:
(i) What are the possible outputs (range) for $g(x)=3^{x}$.
(ii) Is it possible to have negative outputs? Explain why? \qquad
\qquad
(iii) What happens to the output as x decreases? \qquad
\qquad
(iv) Is an output of 0 possible? Why do you think this is? \qquad
\qquad
(v) What are the implications of this for the x-intercept of the graph? \qquad
\qquad
(vi) What is the y-intercept of the graph of $g(x)=3^{x}$?

1. How are they similar and how do they differ?
2. Consider the relations $\left\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, y=2^{x}\right\}$ and $\left\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, y=3^{x}\right\}$. Are they functions? Explain.
\qquad
3. What name do you think is given to this type of function and why do you think it is given this name?
\qquad
\qquad

Section A-Activity 4: Understand the characteristics of $f(x)=a^{x}, a>1$.

1. What is the domain of $f(x)=a^{x}, a>1$?
2. In relation to the graph of $f(x)=a^{x}, a>1$.
(i) Is it a straight line?
(ii) Is $y=f(x)$ increasing or decreasing as x increases?
(iii) Does it have a maximum value?
(iv) Does it have a minimum value?
(v) Describe how its curvature/rate of change is changing. \qquad
3. What is the range of $f(x)=a^{x}, a>1$?
4. What is the x-intercept of the graph $f(x)=a^{x}, a>1$?
5. What is the y-intercept of the graph $f(x)=a^{x}, a>1$? \qquad

Section B-Activity 1: The Exponential Function, $f(x)=\left(\frac{1}{2}\right)^{x}$.

1. For $f(x)=\left(\frac{1}{2}\right)^{x}$:
(i) The base of $f(x)=\left(\frac{1}{2}\right)^{x}$ is
(ii) The exponent of $f(x)=\left(\frac{1}{2}\right)^{x}$ is
(iii) What is varying in the function $f(x)=\left(\frac{1}{2}\right)^{x}$?
(iv) What is constant in the function $f(x)=\left(\frac{1}{2}\right)^{x}$?
2. For $f(x)=\left(\frac{1}{2}\right)^{x}$:

What are the possible inputs i.e. values for x (the domain)?

Natural numbers	\square
Integers	\square
Rational numbers	\square

Irrational numbers
Real numbers

3.

Set up a table of values and draw the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ on your whiteboard:

x	$(1 / 2)^{x}$	$y=f(x)$
-4	$(1 / 2)^{-4}$	16
-3		
-2		
-1		
0		
1		
2		
3		
4		

4. In relation to the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$:
(i) Is it a straight line?
(ii) Is $y=f(x)$ increasing or decreasing as x increases?
(iii) From the table above, find the average rate of change over different intervals.

For example from -2 to -1 and 2 to 3.
What do you notice?
\qquad
(iv) Describe how the curvature/rate of change is changing. \qquad
5. For $f(x)=\left(\frac{1}{2}\right)^{x}$:
(i) What are the possible outputs (range) for $f(x)=\left(\frac{1}{2}\right)^{x}$.
(ii) Is it possible to have negative outputs? Explain why? \qquad
\qquad
(iii) What happens to the output as x decreases?
\qquad
(iv) Is an output of 0 possible? Why do you think this is?
\qquad
(v) What are the implications of this for the x-intercept of the graph? \qquad
\qquad
(vi) What is the y-intercept of the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$?

Section B-Activity 2: The Exponential Function, $g(x)=\left(\frac{1}{3}\right)^{x}$.

1. For $g(x)=\left(\frac{1}{3}\right)^{x}$:
(i) The base of $g(x)=\left(\frac{1}{3}\right)^{x}$ is
(ii) The exponent of $g(x)=\left(\frac{1}{3}\right)^{x}$ is
(iii) What is varying in the function $g(x)=\left(\frac{1}{3}\right)^{x}$?
(iv) What is constant in the function $g(x)=\left(\frac{1}{3}\right)^{x}$?
2. For $g(x)=\left(\frac{1}{3}\right)^{x}$:

What are the possible inputs i.e. values for x (the domain)?

Irrational numbers
Real numbers

3.

Set up a table of values and draw the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$ below on your whiteboard:

x	$(1 / 3)^{x}$	$y=g(x)$
-4	$(1 / 3)^{-4}$	81
-3		
-2		
-1		
0		
1		
2		
3		
4		

4. In relation to the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$:
(i) Is it a straight line?
(ii) Is y increasing or decreasing as x increases?
(iii) From the table above, find the average rate of change over different intervals.

For example from -2 to -1 and 2 to 3 .
What do you notice?
\qquad
(iv) Describe how the curvature/rate of change is changing. \qquad
5. For $g(x)=\left(\frac{1}{3}\right)^{x}$:
(i) What are the possible outputs (range) for $g(x)=\left(\frac{1}{3}\right)^{x}$.
(ii) Is it possible to have negative outputs? Explain why? \qquad
\qquad
(iii) What happens to the output as x decreases?
\qquad
(iv) Is an output of 0 possible? Why do you think this is?
\qquad
(v) What are the implications of this for the x-intercept of the graph? \qquad
\qquad
(vi) What is the y-intercept of the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$?

Section B-Activity 3: Compare the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ with the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$.

1. How are they the same and how do they differ?
\qquad
\qquad
2. Consider the relations $\left\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, y=\left(\frac{1}{2}\right)^{x}\right\}$ and $\left\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}, y=\left(\frac{1}{3}\right)^{x}\right\}$. Are they functions? Explain.
\qquad
3. What name do you think we give to this type of function and why do you think it is given this name?
\qquad
\qquad

Section B-Activity 4: Understand the characteristics of $f(x)=a^{x}, 0<a<1$.

1. What is the domain of $f(x)=a^{x}, 0<a<1$?

In relation to the graph of
2. $f(x)=a^{x}, 0<a<1$.
(i) Is it a straight line?
(ii) Is $y=f(x)$ increasing or decreasing as x increases?
(iii) Does it have a maximum value?
(iv) Does it have a minimum value?
(iv) Describe how its curvature/rate of change is changing. \qquad
\qquad
3. What is the range of $f(x)=a^{x}, 0<a<1$?
4. What is the x-intercept of the graph $f(x)=a^{x}, 0<a<1$?
5. What is the y-intercept of the graph $f(x)=a^{x}, 0<a<1$?

Note: For all the following, you should assume that the domain is \mathbb{R}.

Section C - Activity 1: Compare the graph of $f(x)=2^{x}$ with the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$.

1. How are the graphs similar?
\qquad
2. How are the graphs different? \qquad
3. Rewrite $f(x)=\left(\frac{1}{2}\right)^{x}$ in the form $f(x)=2^{k}$.
4. What transformation maps the graph of $f(x)=2^{x}$ onto the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$?
\qquad

Section C - Activity 2: Compare the graph of $g(x)=3^{x}$ with the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$.

1. How are the graphs similar? \qquad
\qquad
2. How do the graphs differ? \qquad
\qquad
3. Rewrite $g(x)=\left(\frac{1}{3}\right)^{x}$ in the form $g(x)=3^{k}$.
4. What transformation maps the graph of $g(x)=3^{x}$ onto the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$?

Section C - Activity 3: Now I see..

1. If $f(x)=a^{x}, a \in \mathbb{R}, a>1$, then the properties of the exponential function are:
\qquad
\qquad
\qquad
\qquad
2. If $f(x)=a^{x}, a \in \mathbb{R}, a>1$, then the features of the exponential graph are:
\qquad
\qquad
\qquad
\qquad
3. If $f(x)=a^{x}, a \in \mathbb{R}, 0<a<1$, then the properties of the exponential function are:
\qquad
\qquad
\qquad
\qquad
\qquad
4. If $f(x)=a^{x}, a \in \mathbb{R}, 0<a<1$, then the features of the exponential graph are:

Function	Is it an exponential Function? Yes/No	
$f(x)=\left(\frac{1}{2}\right)^{x}$		
$f(x)=x^{2}$		
$f(x)=(-2)^{x}$		
$f(x)=2(3)^{x}$		
$f(x)=-2^{x}$		
$f(x)=3(x)^{\frac{1}{2}}$		
$f(x)=(0.9)^{x}$		

Note: Extension Activities are required to strengthen students' abilities in the following areas from the syllabus:

Level	Syllabus	Page
JCHL	$f(x)=a 2^{x}$ and $f(x)=a 3^{x}$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 31
LCFL	$f(x)=a 2^{x}$ and $f(x)=a 3^{x}$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 32
LCOL	$f(x)=a b^{x}$, where $a \in \mathbb{N}, b, x \in \mathbb{R}$.	Page 32
LCHL	$f(x)=a b^{x}$, where $a, b, x \in \mathbb{R}$.	Page 32

1. A cell divides itself into two every day. The number of cells C after D days is obtained from the function:

$$
C=2^{D}
$$

(a) Draw a graph of the function for $0 \leq D \leq 6$.
(b) Find the number of cells after 15 days.
2. The value of a mobile phone M (in cents) after T years can be obtained from the following function:

$$
M=k\left(\frac{1}{2}\right)^{T}, \text { where } k \text { is a constant. }
$$

(a) Draw a graph of the function for $0 \leq T \leq 6$.
(b) Find the value of k given that the value of the mobile phone after 3 years is $€ 100$.
(c) Find the value of the phone after 7 years.
3. The number of bacteria B in a sample after starting an experiment for m minutes is given by:

$$
B=50(3)^{0.04 m}
$$

(a) Find the number of bacteria in the sample at the start of the experiment.
(b) Find the number of bacteria in the sample after starting the experiment for 3 hours.
4. The graph of $f(x)=k a^{x}$ is shown:
(a) Find the value of k and a.
(b) Hence find the value of $f(x)$ when $x=8$.

Q5. Olive finds that the number of bacteria in a sample doubles every 5 hours. Originally there are 8 bacteria in the sample.

Complete the table below:

Number of hours (hrs.)	Number of bacteria (b)
0	8
5	
10	
15	

(a) Express b in terms of h.
(b) Find the number of bacteria in the sample after 13 hours.
(c) How many hours later will the number of bacteria be more than 100.

Q6. When a microwave oven is turned on for x minutes the relationship between the temperature C° inside the oven is given by $C(x)=500-480(0.9)^{x}$ where $x \geq 0$.
(a) Find the value of $C(0)$.
(b) Explain the meaning of $C(0)$.
(c) Can the temperature inside the microwave oven reach $550 C^{\circ}$?

Answers

Q1 (b) 32,768 cells, Q2 (b) $€ 800$ (c) $€ 6.25$, Q3 (a) 50 (b) 136,220 bacteria, Q4 (a) $k=2, a=3$ (b) 13,122 , Q5 (b) $b=8(2)^{\frac{h}{5}}$ (c) 48 bacteria (d) 18.22 hrs., Q6 (a) $20^{\circ} \mathrm{C}$ (c) No

Activity 1 Making the Most of a Euro

Invest $€ 1$ for 1 year at 100% compound Interest.
Investigate the change in the final value, if the annual interest rate of 100% is compounded over smaller and smaller time intervals.

The interest rate i per compounding period is calculated by dividing the annual rate of 100% by the number of compounding periods per year.

Compounding period	Final value, $F=P(1+i)^{t}$, where i is the interest rate for a given compounding period and t is the number of compounding periods per year. Calculate F correct to 8 decimal places.
Yearly $i=1$	$F=1(1+1)^{1}=2$
Every 6 mths. $i=\frac{1}{2}$	$F=1\left(1+\frac{1}{2}\right)^{2}=2.25$
Every 3 mths. $i=$	
Every mth. $i=$	
Every week. $i=$	
Every day. $i=$	
Every hour. $i=$	
Every minute. $i=$ Every second. $i=$	

What if the compounding period was 1 millisecond ($10^{-3} \mathrm{~s}$), 1 microsecond ($10^{-6} \mathrm{~s}$) or 1 nanosecond $\left(10^{-9} \mathrm{~s}\right)$? What difference would it make?

Will F ever reach 3? How about 2.8?

Activity 2 Further Exploration of Exponential Functions

1. How long will it take for a sum of money to double if invested at 20% compound interest rate compounded annually?
2. 500 mg of a medicine enters a patient's blood stream at noon and decays exponentially at a rate of 15% per hour.
(i) Write an equation to express the amount remaining in the patient's blood stream at after t hours.
(ii) Find the time when only 25 mg of the original amount of medicine remains active.
3.

x	2^{x}	y
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4
3	2^{3}	8
4	2^{4}	16
5	2^{5}	32
6	2^{6}	64
7	2^{7}	128
9	2^{8}	256
10	2^{9}	512
11	2^{10}	1024
12	2^{12}	4096

(a) Describe the type of sequence formed by the numbers in the first column.
(b) Describe the type of sequence formed by the numbers in the second and third columns.
(c) Using the table, and your knowledge of indices, carry out the following operations of multiplication and division in the second sequence, linking the answer to numbers in the first sequence.
(i) 32×128
(ii) $4096 \div 512$
(iii) $\quad 8^{4}$

\mathbf{x}	$\mathbf{2}^{x}$	\boldsymbol{y}
23	2^{23}	838,8608
24	2^{24}	$16,777,216$
25	2^{25}	$33,554,432$
26	2^{26}	$67,108,864$
27	2^{27}	$134,217,728$
28	2^{28}	$268,435,456$
29	2^{29}	$536,870,912$
30	2^{30}	$1,073,741,824$
31	2^{31}	$2,147,483,648$
32	2^{32}	$4,294,967,296$

Using Different Bases

x	$3^{\text {x }}$	x	$4^{\text {x }}$	x	5^{x}	x	$6^{\text {x }}$	x	10^{x}
0	1	0	1	0	1	0	1	0	1
1	3	1	4	1	5	1	6	1	10
2	9	2	16	2	25	2	36	2	100
3	27	3	64	3	125	3	216	3	1,000
4	81	4	256	4	625	4	1,296	4	10,000
5	243	5	1,024	5	3,125	5	7,776	5	100,000
6	729	6	4,096	6	15,625	6	46,656	6	1,000,000
7	2,187	7	16,384	7	78,125	7	279,936	7	10,000,000
8	6,561	8	65,536	8	390,625	8	1,679,616	8	100,000,000
9	19,683	9	262,144	9	1,953,125	9	10,077,696	9	1,000,000,000
10	59,049	10	1,048,576	10	9,765,625	10	60,466,176	10	10,000,000,000
x	$\log _{3}\left(3^{x}\right)$	x	$\log _{4}\left(4^{x}\right)$	x	$\log _{5}\left(5^{x}\right)$	x	$\log _{6}\left(6^{x}\right)$	x	$\log _{10}\left(10^{x}\right)$
1	0	1	0	1	0	1	0	1	0
3	1	4	1	5	1	6	1	10	1
9	2	16	2	25	2	36	2	100	2
27	3	64	3	125	3	216	3	1,000	3
81	4	256	4	625	4	1,296	4	10,000	4
243	5	1,024	5	3,125	5	7,776	5	100,000	5
729	6	4,096	6	15,625	6	46,656	6	1,000,000	6
2,187	7	16,384	7	78,125	7	279,936	7	10,000,000	7
6,561	8	65,536	8	390,625	8	1,679,616	8	100,000,000	8
19,683	9	262,144	9	1,953,125	9	10,077,696	9	1,000,000,000	9
59,049	10	1,048,576	10	9,765,625	10	60,466,176	10	10,000,000,000	10

Formula and Tables Page 21

Séana agus logartaim

Indices and logarthms

$a^{p} a^{q}=a^{p+q}$
$\frac{a^{p}}{a^{q}}=a^{p-q}$
$\left(a^{p}\right)^{q}=a^{p q}$
$a^{0}=1$
$a^{-p}=\frac{1}{a^{p}}$
$a^{\frac{1}{q}}=\sqrt[q]{a}$
$a^{\frac{p}{q}}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p}$
$(a b)^{p}=a^{p} b^{p}$
$\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}$
$\log _{a}(x y)=\log _{a} x+\log _{a} y$
$a^{x}=y \Leftrightarrow \log _{a} y=x$
$\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
$\log _{a}\left(x^{q}\right)=q \log _{a} x$
$\log _{a} 1=0$
$\log _{a}\left(\frac{1}{x}\right)=-\log _{a} x \quad \quad \log _{b} x=\frac{\log _{a} x}{\log _{a} b}$
$\log _{a}\left(a^{x}\right)=x$

$$
a^{\log _{a} x}=x
$$

