## Activity 1

For each function, write in its correct derivative.

| $5 x$ |  |
| :---: | :---: |
| $5 x+2$ |  |
| $5 x-10$ |  |
| $x^{2}+\pi$ |  |
| $x^{2}$ |  |
| $\sin (x)$ |  |
| $\sin (x)-1.3$ |  |
| $\sin (x)+9$ |  |
| $\frac{1}{2} x^{2}$ |  |
| $\frac{1}{2} x^{2}-0.358$ |  |

Find the anti-derivative of the function $f(x)=3$ which passes through the point $(1,5)$.
Q1. How is this question different to all the previous anti-derivative questions you have encountered?
$\qquad$
Q2. Find the indefinite form of the anti-derivative of $f(x)=3$.
$\square$
Q3. Represent the indefinite form of the anti-derivative graphically below by sketching the antiderivatives for each of the following values of $C=\{-3,-2,-1,0,1,2,3\}$.


Q4. Identify the distinct anti-derivative you were asked to find.

|  |  | Area Calculation |
| :---: | :---: | :---: |
| (i) |  |  |
| (ii) |  |  |
| (iii) |  |  |
| (iv) |  |  |
| (v) |  |  |

Explain what happens to the width of the rectangles ( $\Delta x$ ) as the number of rectangles ( $n$ ) increases. Express this relationship using mathematical notation.

Description in words: As the number of rectangles increases, the width of the rectangles $\square$ As $n \rightarrow \square, \Delta x \rightarrow \square$

## Activity 4

Calculate $\int_{2}^{5}(2 x+1) d x$.
Q1. In words describe what you are being asked to do.

Q2. Using a suitable approach, complete the task.

## Group A

Figure 1 shows the UCD Student Computer Centre.


The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.


Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

| $\boldsymbol{x}$ | Width | Height | Area | Pattern |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 5 | 0 | $A=5(0)$ |
| 1 | 1 | 5 | 5 | $A=5(1)$ |
| 2 |  |  |  | $A=$ |
| 3 |  |  |  | $A=$ |
| 4 |  |  |  | $A=$ |
| 5 |  |  |  | $A=$ |
| 6 |  |  |  |  |
| $\vdots$ |  |  | $A(x)=$ |  |
| $x$ |  |  |  |  |

Q5. Sketch the graph of the area function on the empty axes.



Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

| Section of Building | Diagram | Area Calculation |
| :---: | :---: | :---: |
| From $x=0$ up to $x=2$. |  |  |
| Explanation: |  |  |
| From $x=0$ up to $x=5$. |  |  |
| Explanation: |  |  |
| From $x=2$ up to $x=5$. |  |  |
| Explanation: |  |  |

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

| Bounding Function | Area Function |
| :--- | :--- |
| $h(x)=$ | $A(x)=$ |

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

## Group B

Figure 2 shows The Vu Bar in Dubai.


Figure 2 - The Vu Bar, Dubai.


Q1. The height of the building changes as we move from from left ( $x=0$ ) to right ( $x=8$ ). Write down the function which describes the changing height of the building.
$h(x)=$

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.


Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

| $\boldsymbol{x}$ | Width | Height | Area | Pattern |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | $A=\frac{1}{2}(0)(0)$ |
| 1 | 1 | 1 | 0.5 | $A=\frac{1}{2}(1)(1)$ |
| 2 |  |  |  | $A=$ |
| 3 |  |  |  | $A=$ |
| 4 |  |  |  | $A=$ |
| 5 |  |  |  | $A=$ |
| 6 |  |  |  |  |
| 7 |  |  |  |  |
| 8 |  |  |  |  |
| $\vdots$ |  |  |  |  |
| $x$ |  |  |  |  |

Q5. Sketch the graph of the area function on the empty axes.



Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

| Section of Building | Diagram | Area Calculation |
| :---: | :---: | :---: |
| From $x=0$ up to $x=3$. |  |  |
| Explanation: |  |  |
| From $x=0$ up to $x=5.5$. |  |  |
| Explanation: |  |  |
| From $x=3$ up to $x=5.5$. |  |  |
| Explanation: |  |  |

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

| Bounding Function | Area Function |
| :--- | :--- |
| $h(x)=$ | $A(x)=$ |

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

## Group C

Figure 3 shows a modern timber dwelling.


Figure 3 - Timber Dwelling.


The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.


Q2. By calculating the area of the rectangular piece of building shown, complete the statement:

When the width of the rectangular piece is 1 unit, the area of the rectangle is:
$A=$


Q3. By calculating the area of the rectangular piece of building shown, complete the statement:

When the width of the rectangular piece is 2 units, the area of the rectangle is:
$A=$

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

| $\boldsymbol{x}$ | Width | Height | Area | Pattern |
| :---: | :---: | :---: | :---: | :--- |
| 3 | 0 | 9 | 0 | $A=(9)(0)$ |
| 4 | 1 | 9 | 9 | $A=(9)(1)$ |
| 5 |  |  |  | $A=$ |
| 6 |  |  |  | $A=$ |
| 7 |  |  |  | $A=$ |
| 8 |  |  |  | $A=$ |
| 9 |  |  |  |  |
| 10 |  |  |  |  |
| 11 |  |  |  |  |
| 12 |  |  |  |  |
| $\vdots$ |  |  |  |  |
| $x$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Q5. Sketch the graph of the area function on the empty axes.



Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

| Section of Building | Diagram | Area Calculation |
| :---: | :---: | :---: |
| From $x=3$ up to $x=11$. |  |  |
| Explanation: |  |  |
| From $x=3$ up to $x=6$. | $\qquad$ |  |
| Explanation: |  |  |
| From $x=6$ up to $x=11$. |  |  |
| Explanation: |  |  |

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

| Bounding Function | Area Function |
| :--- | :--- |
| $h(x)=$ | $A(x)=$ |

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.


