WS08.04 Exploring the Slope of Tangents and Rates of Change

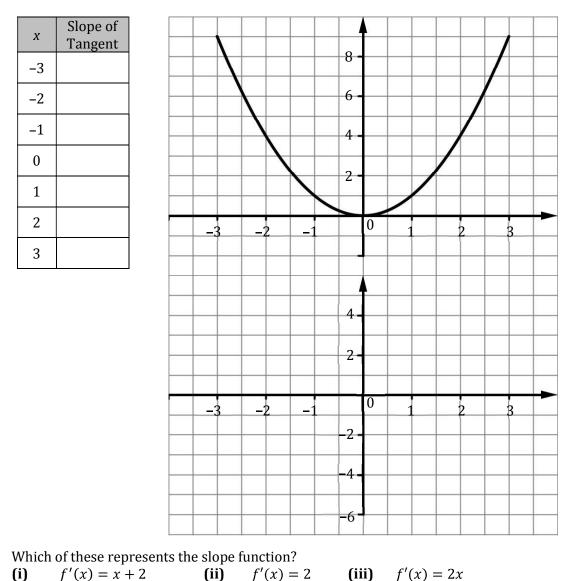
Function	Slope at all points on the function	Equation of the slope function
f(x) = 3		f'(x) =
g(x) = 1		g'(x) =
h(x) = -1		h'(x) =
<i>y</i> = -3		$\frac{dy}{dx} =$
÷	÷	:
f(x) = n		f'(x) =

1. Slides with the various functions will be shown. Fill in the following table.

The derivative of a constant is ______.

2. Slides with the various functions will be shown. Fill in the following table.

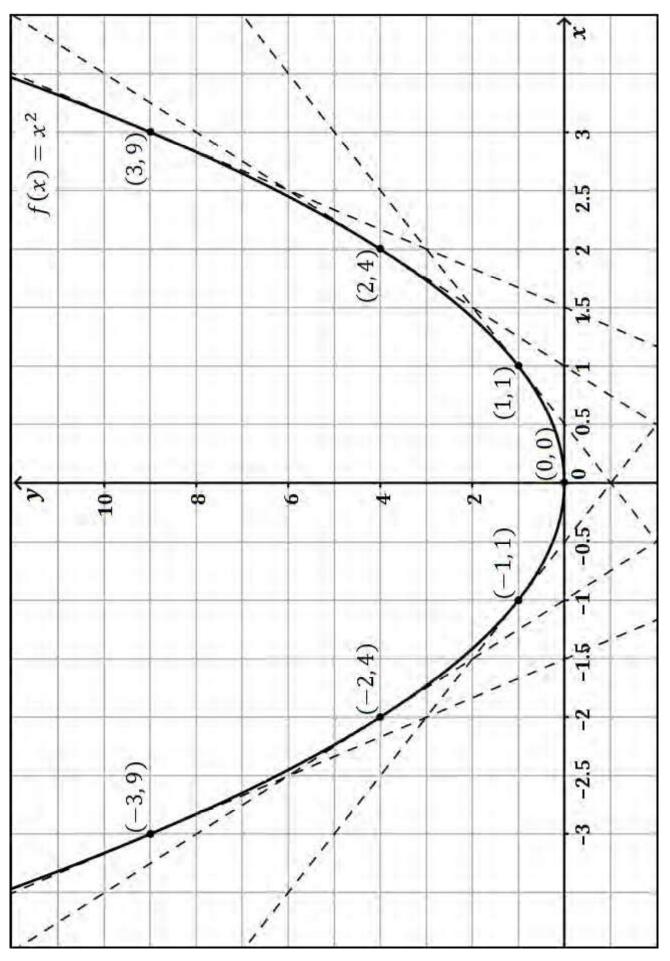
Function	Slope at all points on the function	Equation of the slope function
f(x) = x		f'(x) =
g(x) = x + 2		<i>g</i> ′(<i>x</i>) =
$h(x) = \frac{3}{2}x$		h'(x) =
$y = \frac{3}{2}x + 3$		$\frac{dy}{dx} =$
p(x) = -x		
k(x) = -x + 3		
:	:	:
f(x) = nx (where <i>n</i> is a constant)		
f(x) = nx + c (where <i>n</i> and <i>c</i> are constants)		


The derivative of f(x) = nx is _____.

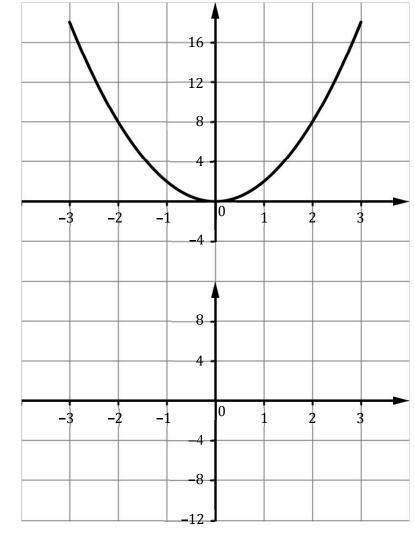
The derivative of f(x) = nx + c is _____.

- **3.** Page 14 has a graph of the function $f(x) = x^2$.
 - (a) Calculate the slopes of the tangents at the points indicated and enter your answers in the table below.

Hint: A ruler will help you read the slopes of the tangents.

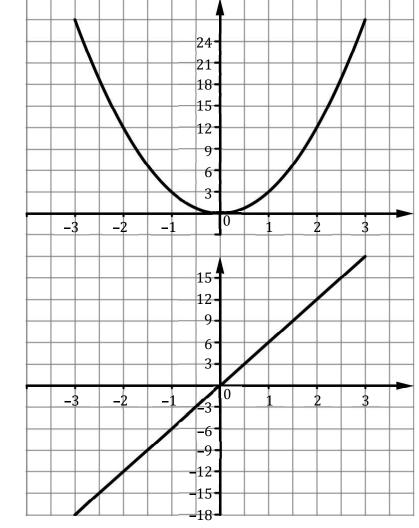

(b) Graph the values from the table *(on the lower graph)* in the space provided.

Give a reason for your answer.


(c)

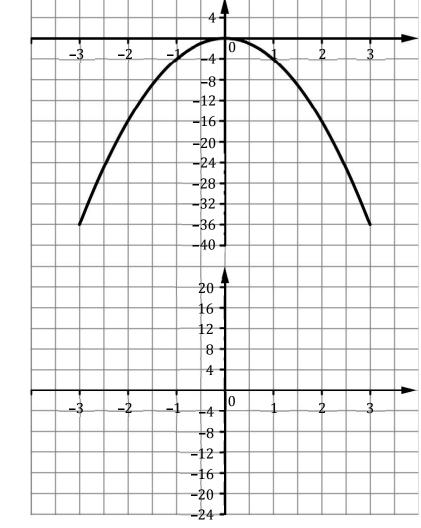
Graph of $f(x) = x^2$

- **4.** To complete the exercise below refer to the graph of the function $g(x) = 2x^2$ which is on the board.
 - (a) Fill in the slopes of the tangents at the points indicated and enter your answers in the table below.
 - (b) Graph the values from the table *(on the lower graph)* in the space provided.


x	Slope of Tangent
-3	
-2	
-1	
0	
1	
2	
3	

(c) The equation of the slope function, g'(x), is:

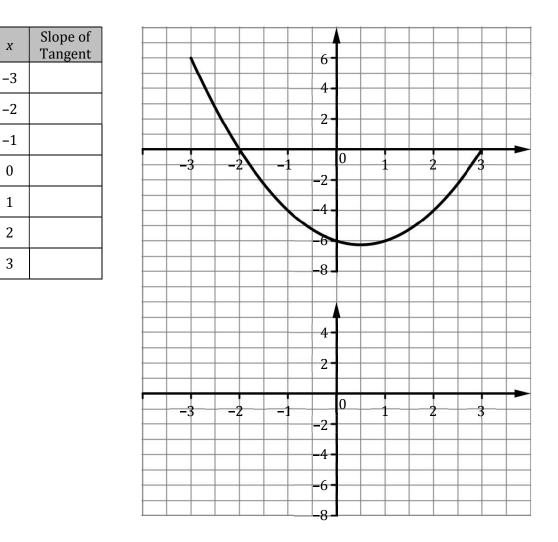
- 5. To complete the exercise below refer to the graph of the function $h(x) = 3x^2$ which is on the board.
 - (a) Fill in the slopes of the tangents at the points indicated.
 - (b) Graph the values from the table *(on the lower graph)* in the space provided.


x	Slope of Tangent
-3	-18
-2	-12
-1	-6
0	0
1	6
2	12
3	18

(c) The equation of the slope function, h'(x), is: h'(x) = 6x

- To complete the exercise below refer to the graph of the function $y = -4x^2$ which is on the board. (a) Fill in the slopes of the tangents at the points indicated. (b) Graph the values from the table *(on the lower graph)* in the space provided. 6.

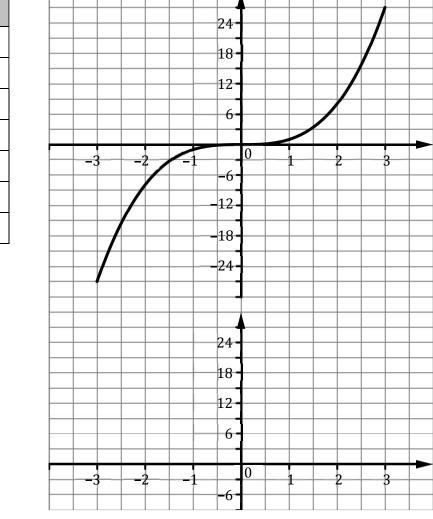
x	Slope of Tangent
-3	
-2	
-1	
0	
1	
2	
3	



The equation of the slope function, $\frac{dy}{dx'}$ is: (c)

7. Refer to questions 3, 4, 5, and 6 in order to fill in the table below.

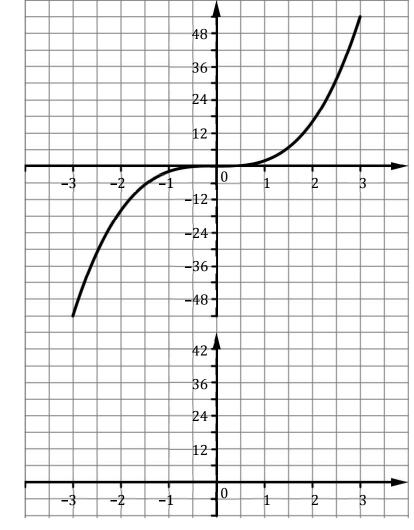
Function, $f(x)$	Slope of Function or $f'(x)$
$f(x) = x^2$	f'(x) =
$g(x) = 2x^2$	g'(x) =
$h(x) = 3x^2$	h'(x) =
$y = -4x^2$	$\frac{dy}{dx} =$
$k(x) = 10x^2$	k'(x) =
:	:
$f(x) = ax^2$	f'(x) =


- **8.** To complete the exercise below refer to the graph of the function $f(x) = x^2 x 6$ which is on the board.
 - (a) What do you think the equation of the slope function, f'(x), is?_____
 - **(b)** Fill in the slopes of the tangents at the points indicated.
 - (c) Graph the values from the table *(on the lower graph)* in the space provided.

- (d) The equation of the slope function, f'(x), is:
- (e) Compare this to your prediction in part (a).What conclusion can be drawn from finding the slope function of this last function?
- (f) Patrick wants to know what the slope of f(x) when x = 1.5
 - There are a few ways of estimating/calculating the slope of f(x) when x = 1.5.
 - (i) From the graph of f(x) in the GeoGebra file what would be a good estimate of the slope of f(x) when x = 1.5?
 - (ii) From the list of slopes in the table what would be a good estimate of the slope of f(x) when x = 1.5?
 - (iii) From the graph of f'(x) what would be a good estimate of the slope of f(x) for x = 1.5? (Show your workings on the graph)
 - (iv) From the equation f'(x) what is the slope of f(x) when x = 1.5?
- **9.** (a) What is the equation of the slope function (f'(x)) of $f(x) = x^2 x$?
 - **(b)** What is the slope of the tangent of the function $f(x) = x^2 x$ when x = 3?

- **10.** To complete the exercise below refer to the graph of the function $f(x) = x^3$ which is on the board.
 - (a) Fill in the slopes of the tangents at the points indicated.
 - (b) Graph the values from the table *(on the lower graph)* in the space provided.

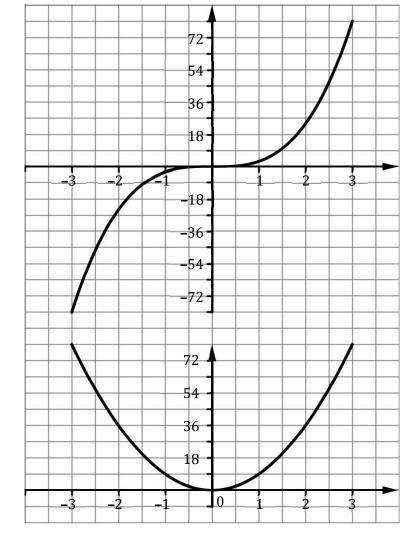
x	Slope of Tangent
-3	
-2	
-1	
0	
1	
2	
3	


- (c) What is the shape of the slope function?_____
- (d) How could you confirm this?_____

The parent function for quadratics is $y = x^2$. $y = x^2$ contains the points: (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9). Your slope function contains the points: (-3,), (-2,), (-1,), (0,), (1,), (2,), (3,).

The equation of the slope function, f'(x), is: _____

- **11.** To complete the exercise below refer to the graph of the function $g(x) = 2x^3$ which is on the board.
 - (a) Fill in the slopes of the tangents at the points indicated.
 - (b) Graph the values from the table *(on the lower graph)* in the space provided.


x	Slope of Tangent
-3	
-2	
-1	
0	
1	
2	
3	

(c) The equation of the slope function, g'(x), is:

- **12.** To complete the exercise below refer to the graph of the function $h(x) = 3x^3$ which is on the board.
 - (a) Fill in the slopes of the tangents at the points indicated.
 - (b) Graph the values from the table (on the lower graph) in the space provided.

x	Slope of Tangent
-3	81
-2	36
-1	9
0	0
1	9
2	36
3	81

(c) The equation of the slope function, h'(x) is: gx^2

Refer to questions 10, 11, and 12 in order to fill in the table below. 13.

Function, $f(x)$	Slope Function or $f'(x)$
$f(x) = x^3$	f'(x) =
$g(x) = 2x^3$	g'(x) =
$h(x) = 3x^3$	h'(x) =
:	:
$f(x) = ax^3$	f'(x) =

What are the slopes of the functions: (i) $h(x) = x^8$ 14.

- $g(x) = 3x^{10}$ (ii)
- (iii) $f(x) = 5x^2 3x 6?$