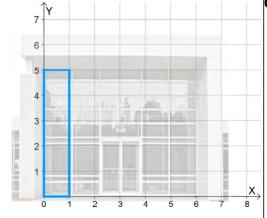
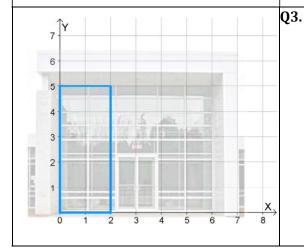

Group A

Figure 1 shows the UCD Student Computer Centre.


Figure 1 - The UCD Student Computer Centre.

Write down the function which describes the height of the building as we move from left (x = 0) to right (x = 6).

$$h(x) =$$

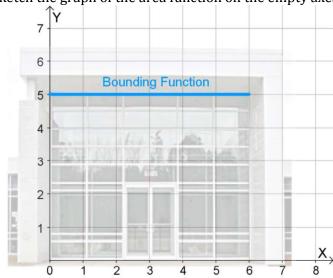

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

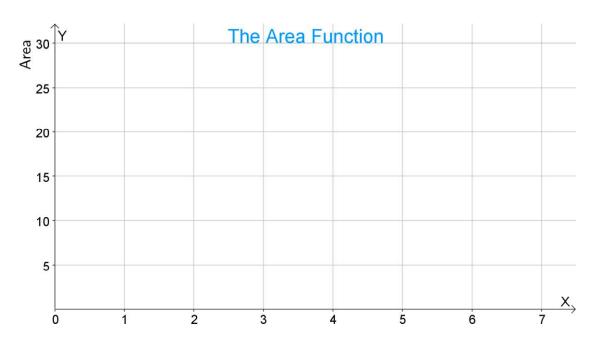
Q2. By calculating the area of the rectangular piece of building shown, complete the statement:

When **the width of the rectangular piece is 1** unit, the area of the rectangle is:

$$A =$$

By calculating the area of the rectangular piece of building shown, complete the statement:

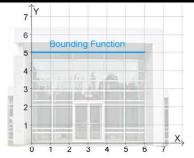

When **the width of the rectangular piece is 2** units, the area of the rectangle is:


$$A =$$

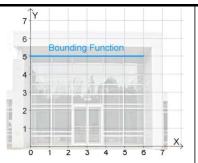
Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

x	Width	Height	Area	Pattern
0	0	5	0	A = 5(0)
1	1	5	5	A = 5(1)
2				A =
3				A =
4				A =
5				A =
6				A =
:	:	:	:	:
Х			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.



- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - **(b)** <u>Use the area function</u> to calculate the given area.
 - **(c)** Explain how the area function is used to calculate area.


From $x = 0$ up to $x = 2$.
_ , .
Explanation:

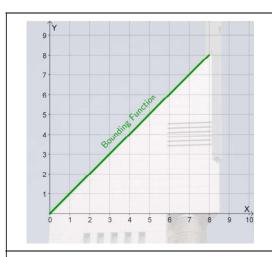
From x = 0 up to x = 5.

Explanation:

From x = 2 up to x = 5.

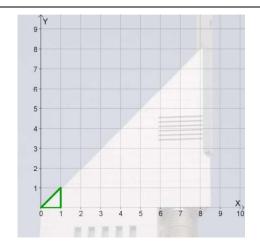
Explanation:

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).


Bounding Function	Area Function
h(x) =	A(x) =

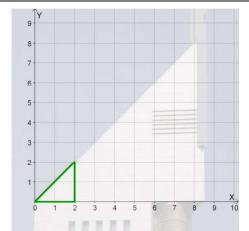
(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

-11-


Figure 2 - The Vu Bar, Dubai.

Q1. The height of the building changes as we move from from left (x = 0) to right (x = 8). Write down the function which describes the changing height of the building.

$$h(x) =$$

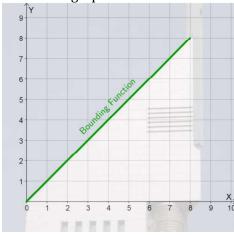

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

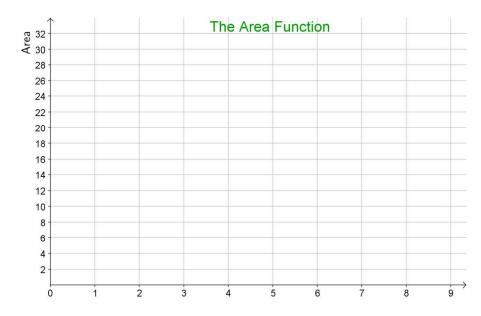
Q2. By calculating the area of the triangular piece of building shown, complete the statement:

When **the width of the triangular piece is 1** unit, the area of the triangle is:

$$A =$$

Q3. By calculating the area of the triangular piece of building shown, complete the statement:

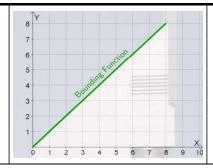

When **the width of the triangular piece is 2** units, the area of the rectangle is:


$$A =$$

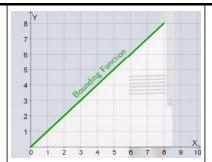
Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

x	Width	Height	Area	Pattern
0	0	0	0	$A = \frac{1}{2}(0)(0)$
1	1	1	0.5	$A = \frac{1}{2}(1)(1)$
2				A =
3				A =
4				A =
5				A =
6				A =
7				
8				
i i	:	:	:	:
X			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.



- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - **(b)** <u>Use the area function</u> to calculate the given area.
 - **(c)** Explain how the area function is used to calculate area.


Section of Building	Diagram	Area Calculation
From $x = 0$ up to $x = 3$.	8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 10	
Explanation:		

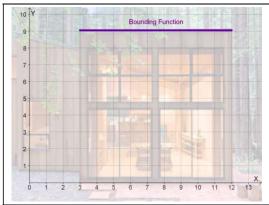
From x = 0 up to x = 5.5.

Explanation:

From x = 3 up to x = 5.5.

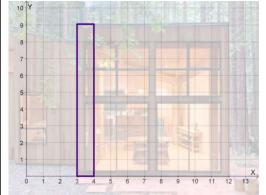
Explanation:

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).


Bounding Function	Area Function
h(x) =	A(x) =

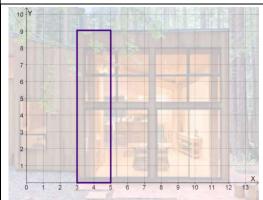
(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

-14-


Figure 3 - Timber Dwelling.

Q1. Write down the function which describes the height of the building as we move from left (x = 0) to right (x = 12).

$$h(x) =$$

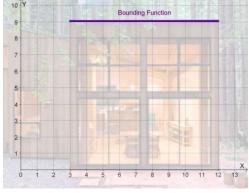

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

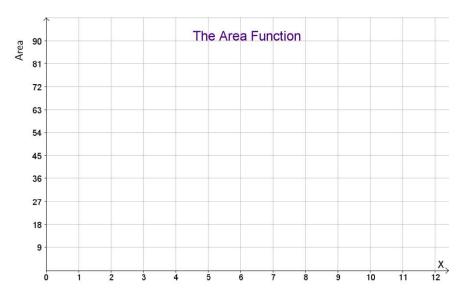
Q2. By calculating the area of the rectangular piece of building shown, complete the statement:

When **the width of the rectangular piece is 1** unit, the area of the rectangle is:

A =

Q3. By calculating the area of the rectangular piece of building shown, complete the statement:

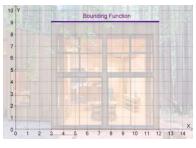

When **the width of the rectangular piece is 2** units, the area of the rectangle is:


A =

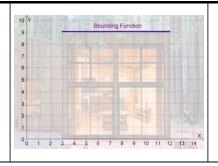
Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

x	Width	Height	Area	Pattern
3	0	9	0	A = (9)(0)
4	1	9	9	A = (9)(1)
5				A =
6				A =
7				A =
8				A =
9				A =
10				
11				
12				
:	:	:	:	:
X			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.



- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - **(b)** <u>Use the area function</u> to calculate the given area.
 - **(c)** Explain how the area function is used to calculate area.


Y Bounding Function	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	
<u>'</u>	

From x = 3 up to x = 6.

Explanation:

From x = 6 up to x = 11.

Explanation:

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
h(x) =	A(x) =

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.