Find the anti-derivative of the function $f(x)=3$ which passes through the point $(1,5)$.
Q1. How is this question different to all the previous anti-derivative questions you have encountered?
\qquad
Q2. Find the indefinite form of the anti-derivative of $f(x)=3$.
\square
Q3. Represent the indefinite form of the anti-derivative graphically below by sketching the antiderivatives for each of the following values of $C=\{-3,-2,-1,0,1,2,3\}$.

				Y					
			8.						
			7.						
			${ }^{7}$						
			$\left[\begin{array}{l} 6 \\ 5 \end{array}\right]$						
			5						
			4						
			1 0						X
-4	-3	-2	-1	0	1	2	23	34	4
			--2						
			-3.						
			-4						
			- -5						

Q4. Identify the distinct anti-derivative you were asked to find.

