Functions and different types of functions

Injective
-One to one only

- Not all elements
of the codomain must be included in range If $f(x)=f(y)$ then $x=y$

Bijective =injective and surjective

A relation is a function if for every \boldsymbol{x} in the domain there is exactly one \boldsymbol{y} in the codomain.
A vertical line through any element of the domain should intersect the graph of the function exactly once.
(one to one or many to one but not all the Bs have to be busy)

A function is injective if for every \boldsymbol{y} in the codomain \mathbf{B} there is at most one x in the domain.
A horizontal line should intersect the graph of the function at most once (i.e.not at all or once).
(one to one only but not all the Bs have to be busy)

A function is surjective if for every \boldsymbol{y} in the codomain \mathbf{B} there is at least one x in the domain.
A horizontal line intersects the graph of the function at least once (i.e.once or more). The range and the codomain are identical.
(one to one or many to one and all the Bs must be busy)

A function is bijective if for every \boldsymbol{y} in the codomain there is exactly one x in the domain.
A horizontal line through any element of the range should intersect the graph of the function exactly once. (one to one only and all the Bs must be busy).

Functions and different types of functions

Sample paper 1 LCHL 2012

Question 5

A is the closed interval $[0,5]$. That is, $A=\{x \mid 0 \leq x \leq 5, x \in \mathbb{R}\}$.
The function f is defined on A by:

$$
f: A \rightarrow \mathbb{R}: x \mapsto x^{3}-5 x^{2}+3 x+5
$$

(a) Find the maximum and minimum values of f.
$y=x^{3}-5 x^{2}+3 x+5$
$\frac{d y}{d x}=3 x^{2}-10 x+3$
Solve $\frac{d y}{d x}=0$
$3 x^{2}-10 x+3=0$
$(3 x-1)(x-3)=0$
$x=\frac{1}{3}, x=3$
$x=\frac{1}{3}, y=5.48$
$x=3, y=-4$

$\frac{d y}{d x}=3 x^{2}-10 x+3$
$\frac{d^{2} y}{d x^{2}}=6 x-10$
$\left(\frac{d^{2} y}{d x^{2}}\right)_{x=\frac{1}{3}}=-8<0 \Rightarrow x=\frac{1}{3}$ is a local maximum
$\left(\frac{d^{2} y}{d x^{2}}\right)_{x=3}=8>0 \Rightarrow x=3$ is a local minimum
In the interval $[0,5]$ the minimum value of f is -4 at $x=3$
In the interval $[0,5]$ the maximum value of f is 20 at $x=5$

(b) State whether f is injective. Give a reason for your answer.
f is not injective as for every y in the codomain there can be more than one x in the domain as shown by the intersection of two of the horizontal red lines below with the graph. There are for example three values of x for which $f(x)=5$.

