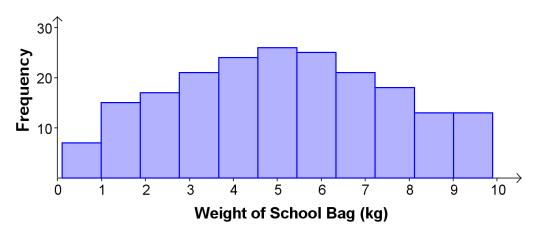

WS10.03 Using a Co - construction Approach

Developing Ideas

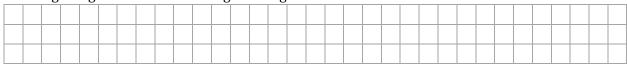


The data for the line plot is from two classes in a school. The sample size is n=59.

116		1113	, ut		lai	aı	lu	per	CEI	ıtag	CS	cai	1 00	us	L	111 <u>y</u>	ou	li u	esci	ıp	uo	11.			Т	T		\top	\top	\top	
	+																											+		+	-
Δı	na n	Δrc	οn	1472	ചേ	hea	nt	on i	⊦h⊿	day	z of	fth	Δ C	urt	7Δ17	So	me	oon	e sa	iд	the	X7 X/	VOI	ıld	σiv	ω τι	011	€1	ሰበ	if	37 6
																			c sa hold												
		54								pre																		1			
	+																											+	+	+	
Ex	mla	in v	vh	v vo	11 (ho	se 1	this	ทเ	mb	er.																				
			111																									Τ	Т	Τ	
																												+	+	+	
_				<u> </u>																											
		.,	,																												
D۵	CCT	าทอ	nο	TA7 T	7011	mi	σh_1	t 170	ar i	ncr	226	Δ 17	<i>γ</i> Ω111	r ch	าวท	CDC	of :	5	nin	σt	·hΔ	∉1	UU.	2							
De	escr	ıbe	no	w y	ou	mi	gh	t yo	u i	ncr	eas	е у	ou	r cł	nan	ces	of	wii	nin	g t	he	€1	00	?							
De	escr	ibe	no	w y	ou	mi	gh	t yo	u i	ncr	eas	е у	ou	r cł	nan	ces	of	wii	nnin	g t	he	€1	00	?							
De	escr	ibe	no	ow y	ou	mi	gh	t yo	u i	ncr	eas	еу	ou	r cł	nan	ces	of	wii	nnin	g t	the	€1	00	?							
																	of	wii	nnin	g t	the	€1	00.	?							
										ncre							of	wii	nnin	gt	he	€1	00	?							
																	of	wii	nnin	gt	he	€1	00	?							
																	of	wii	nnin	gt	he	€1	00	?							
De	escr	ibe	yo	ur	cha	nce	es c	of w	rinr	ning	; th	e €	£10	0 n	ow				nnin			€1	00	?							
De	escr	ibe	yo	ur	cha	nce	es c	of w	rinr	ning	; th	e €	£10	0 n	ow							€1	00.	?							
De	escr	ibe	yo	ur	cha	nce	es c	of w	rinr	ning	; th	e €	£10	0 n	ow							€1	00'	?							
De	escr	ibe	yo	ur	cha	nce	es c	of w	rinr	ning	; th	e €	£10	0 n	ow							€1	00'	?							
De Ex	escr	ibe	yo	ur (cha ou c	nce	es d	of w	hei	ning	; th	e €	£10	0 n	cha	ance	es c	of v		inş	J.				nou	seh	nole	d?			
De Ex	escr	ibe	yo	ur (cha ou c	nce	es d	of w	hei	ning	; th	e €	£10	0 n	cha	ance	es c	of v	/inn	inş	J.				nou	seh	nole	d?			
De Ex	escr	ibe	yo	ur (cha ou c	nce	es d	of w	hei	ning	; th	e €	£10	0 n	cha	ance	es c	of v	/inn	inş	J.				nou	seh	nole	d?			
De Ex	escr	ibe	yo	ur (cha ou c	nce	es d	of w	hei	ning	; th	e €	£10	0 n	cha	ance	es c	of v	/inn	inş	J.				nou	seh	nole	d?			
De Ex	escr appla	ibe in h	yo	ur o	eha ou c	nce	es c	of w	inr	ning	th crea	e € ase	e yo	0 n	cha	ance	ha	of w	/inn	inş	g.	int	the	ir h							
Ex [s	escr appla	ibe in h	yo	ur o	eha ou c	nce	es c	of w	inr	ning	th crea	e € ase	e yo	0 n	cha	ance	ha	of w	vinn	inş	g.	int	the	ir h							
De Ex Is	escr rpla it p	ibe in h	yo	ur o	eha ou c	nce	es c	of w	inr	ning	th crea	e € ase	e yo	0 n	cha	ance	ha	of w	vinn	inş	g.	int	the	ir h							

Analysing Distributions

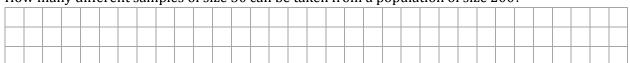
The distribution of weights of school bags of all 200 students in a school is shown in the diagram. We will call this our *population distribution*.



1. Describe the population distribution by making one statement about each of the three characteristics indicated below:

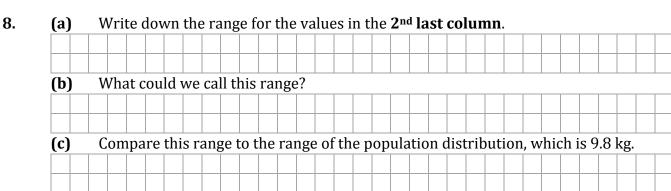


2. Before you take some samples from the distribution, you must make two predictions.


(a) If you took a sample of size 30 and found the mean of the sample describe the chances of getting a mean between 1 kg and 2 kg.

(b) If you took a sample of size 30 and found the mean of the sample what number would you expect to get?

3. How many different samples of size 30 can be taken from a population of size 200?

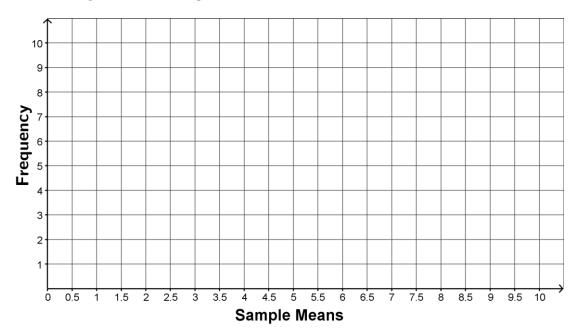

4. The table below shows the results of 19 samples each of size n=30. Create one more sample of size 30 and record the results in the table.

Sample Number						Sets	u the re				Mean	Standard Deviation
	5.2	9.5	2	3.5	3.5	7.9	5	2.5	3	6		
1	5	7	2	5.5	5.1	1	5.6	1.7	1.5	2	4.9	2.4
	8.1	7.1	4	8.8	6.8	6.5	4	4	5.5	8		
	0.8	6	5	5	4	4	6.5	5.2	4	2		
2	5.6	7	7	1.5	9.9	5.7	4.6	3	6.8	9	4.8	2.5
	2.5	3	2	8.9	6.5	3	1	3	8	2.5		
	8	4	8	1.5	8.8	6	3.5	9.5	9	6.7		
3	7	4	4.1	2	4	5	7.9	2	4	1	4.6	2.6
	2	4	3.5	4	3	7.1	1.1	5.1	0.5	3		
	3	2	5	6.2	8	6.5	3	5.1	9	1	4 =	0.5
4	2	6.8	2.5	3	5	7.5	6.8	2	2.5	2	4.7	2.5
	1.7	3.5	9.9	8	5.8	8	1.5	3.5	4	5		
-	9.9	5	4	7	7.4	2.5	8	5	4	5.1	E o	2.4
5	9	6	5 7	6.8	5 5	1.7	5.4	9.7	3.5	4	5.3	2.4
		6.6	5	3 9.7		1.6	5 2	8	1.1	5.6		
4	0.1 9			9.7	6.9	7.8	3	6.7 2.5	4 5.6	5	E 4	2.7
6		8	6 4	9.9	9	3 5		4	3.6	8 5	5.4	2.7
	7.4	4.6	9.7	2.6	9	5	6.5 2	5.1	7	9		
7	4	4.6 9	9.7	7.8	5	8	0.5	8.9	3	7	T 6	2.0
,	9.9	3	2	8.5	4	1.3	3.5	9.5	8.1	3	5.6	2.9
	6	6.5	4	4	4	9	5.6	9.5 5	5	0.1		
8	5	9	6.8	9.7	0.8	8.9	6	5.9	4	9.9	5.8	2.6
O	8.8	3	2.5	6	9.9	8	8	3.5	3.5	5.5	5.0	2.0
	6	2	7.1	5.4	5	3	6.8	9	8	8		
9	7.8	8	9	1.2	3	5	3	5	5	9	5.4	2.5
,	5.7	0.1	2	2	5.1	7	3	8.1	5.6	5.9	3.4	2.3
	4	5	6	9.9	9	1	5	9.4	4	6.5		
10	4	4	4	0.1	6.5	2	7.5	1.5	4	3	4.9	2.9
10	4	0.5	5	9	2.5	6	3	9	9.5	1	4.7	2.9
	3	4	1	8	5	2	5	8	5	6.5		
11	9.4	8.4	4	5.5	5	1.5	1.2	6	8	4	5.0	2.8
	3.5	6.7	0.5	2	4	8.8	9	1	6.2	9	3.0	2.0
	7	6.5	6	4	9	6.5	8	4	1.3	3		
12	1.9	0.5	3	1.1	6	5.3	9.7	5.9	9.5	4.1	5.0	2.8
	8.1	5	4	7.9	1.1	4	8	0.5	3	7.1	3.0	2.0
	2.5	1	7.9	3	5	1.1	2.5	4	8.8	4		
13	1	6.9	9.1	5.2	5.8	8.4	7.4	2.5	4	6.5	4.8	2.6
	7	5.3	6.8	1.7	1.5	2	3	5	6.8	8	1.0	
	1.7	5	6	6	7.5	5	6	9	9.3	4		
14	8	4	4.8	4.1	7	5.9	6.2	1.1	8	7	5.2	2.6
	2	0.1	9.5	4	3.5	3.5	8.8	1.5	6.7	1.5		
	1	4	2	2.5	5.6	3	6	3.9	4	3.5		
15	4	8.8	9.7	2	1	9.9	5	5	8	3	4.4	2.6
	4.5	4	3	9	5	1	5	1.1	1.7	5		
•	4	4	6	0.5	2.5	4	5.6	9.9	6.2	1.6		
16	6.2	4	4	7.8	5	8.4	3	6.5	3	5	4.9	2.4
	4	3	4.9	1	7	8	7.9	8	2	5		
	0.5	9	4	6	6.5	5.1	5	2	7	1.6		
17	2	2.5	4.7	3.5	1	6.5	2	6.7	3.5	6.6	4.7	2.5
	5	6	9.7	6	5	0.5	3	8.1	8	3		
	9.5	1.1	7	5	1	1.6	6	9.7	8	4		
18	6.7	6	6.8	7.5	4	8	4	6	7.1	4	5.5	2.5
	5.2	7.8	6.8	4.8	8	4	0.5	1.3	5	8		
	3.9	8.4	7	3	6	5.4	9.9	5	5	3		
19	2	8.8	4	9	5	7	1.2	1.1	7.8	5	4.9	2.7
	3.5	3	5.5	2	3	9.9	6.8	0.5	4	2		
20												
20												

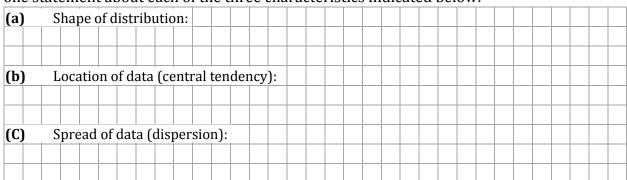
For the next few questions use the STAT mode on your calculator.

- 5. Calculate, correct to one decimal place, the mean of your sample and write it in the **2**nd **last column**.
- **6.** Calculate, correct to one decimal place, the standard deviation of your sample and write it in the **last column**.

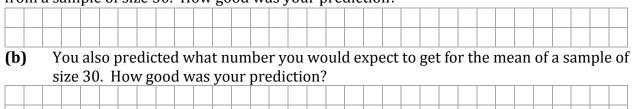
(a)	ւ ⊟	aic	ula	lle	, cc	1116	ECL	ιο	OH	e a	eci	IIIa	пр	lac	e, ι	ne	Ш	ean	01	UH	e Z	nu j	las	ιc	OIU		H.		
(b)	V	/ha	it c	ou	ld	we	ca	ll t	his	m	ear	1?																	
(c)	С	om	ра	re	thi	is n	nea	ın t	o t	he	me	ean	ı of	th	e p	opi	ula	tio	n d	ist	rib	uti	on	(μ), v	vhi	ch	is 5	5.1
											1			t														\vdash	



(a)	Calcula column		rect to	one	e de	cima	al p	lace	, th	e st	and	laro	d d	evi	atio	n o	f th	e 2	nd]	ast	ţ
(b)	What could we call this standard deviation?																				
(c)	Compare this standard deviation to the standard deviation of the population																				
	distribu	ition (τ), wh	ich	is 2.	6 kg	Ţ.										-	_			


10. Fill in the table below using your sample means. There is a row provided if you want to use tally marks. [Note that 5.0–5.5 means at least 5.0 kg but less than 5.5 kg etc.]

Sample Means	2.5 - 3.0	3.0 - 3.5	3.5 - 4.0	4.0 - 4.5	4.5 - 5.0	5.0 - 5.5	5.5 - 6.0	6.0 - 6.5	6.5 - 7.0	7.0 - 7.5	7.5 – 8.0
Tally											
Frequency											


11. Draw a histogram of the sample means.

12. Compare the distribution of the sample means to the population distribution by making one statement about each of the three characteristics indicated below:

13. (a) In **Q2** above you described the chances of getting a mean between 1 kg and 2 kg from a sample of size 30. How good was your prediction?

Using a Sample to Make a Statement about the Population Mean, (μ)

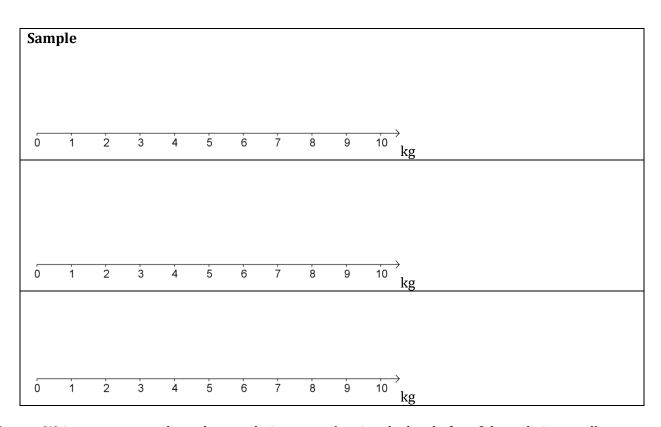
N.B. Ignore any findings from the earlier investigation about the school bags.

We are going to see if we can use a sample to make a statement about the (unknown) population mean.

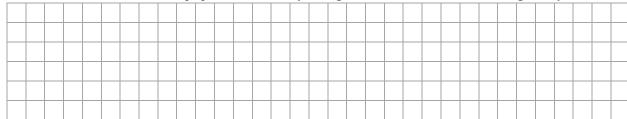
A sample of size 30 was taken of the weights of school bags of post-primary students. The mean of the sample (\bar{x}) is 4.5 kg. The standard deviation of the sample is 2.5 kg.

1. Make a statement about the value of the population mean.

- **2.** There are 3 spaces (Sample, Population, Sampling Distribution of the Means) provided below for any sketches you would like to draw.
 - (a) Write down and (b) sketch everything you know about each distribution where possible.


Hints

What do we know and what do we not know?


What do we need to know to find what we do not know?

What do I know that can be helpful?

What's similar about this problem to what I already know, and what's different?

3. Write a statement about the population mean (stating the level of confidence being used).

Summary of Our Findings

Fill in what you know about the Shape, Centre and Spread of each of the distributions in the table below. Words, numbers and symbols can be used.

	Shape	Centre	Spread
Population		μ	σ
One Large Sample			
All Sample Means			