Student Activity 3

Calculating ratios for similar right angled triangles with angles of 30°

- Measure the 90° and the 30° angles in the following triangles. What is the measure of the third angle?
- Label the hypotenuse as "hyp". With respect to the 30° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the table below.

Marked Angle $\text { Size }=30^{\circ}$	\|opp//mm	\|hyp//mm	\|adj/mm	$\begin{array}{\|l} \hline \frac{\text { opp }}{\text { hyp }} \\ \text { (for ang } \\ \hline \end{array}$	$\left.e=30^{\circ}\right)$	$\frac{\text { adj }}{\text { hyp }}$ (for an	$\text { le } \left.=30^{\circ}\right)$	$\begin{array}{\|l} \frac{\text { opp }}{\text { adj }} \\ \text { (for ang } \end{array}$	$\text { le }=30^{\circ} \text {) }$
				fraction	decimal	fraction	decimal	fraction	decimal
T1									
T2									
T3									
T4									
T5									
Mean Value (correct to 2 decimal places)									

Student Activity 4

Calculating ratios for similar right angled triangles with angles of 40°

- Measure the 90° and the 40° angles in the following triangles. What is the measure of the third angle?
- Label the hypotenuse as "hyp". With respect to the 40° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the table below.

Marked Angle $\text { Size }=40^{\circ}$	\|opp/mm	\|hyp/mm	\|adj/mm	$\begin{aligned} & \frac{\text { opp }}{\text { hyp }} \\ & \text { (for ang } \end{aligned}$	$\left.l e=40^{\circ}\right)$	$\begin{aligned} & \frac{\text { adj }}{\text { hyp }} \\ & \text { (for an } \end{aligned}$	$\text { gle } \left.=40^{\circ}\right)$	$\begin{array}{\|l\|} \hline \frac{\text { opp }}{\text { adj }} \\ \text { (for an } \\ \hline \end{array}$	$\text { gle } \left.=40^{\circ}\right)$
				fraction	decimal	fraction	decimal	fraction	decimal
T1									
T2									
T3									
T4									
T5									
Mean Value (correct to 2 decimal places)									

Student Activity 5

Calculating ratios for similar right angled triangles with angles of 45°

- Measure the 90° and the 45° angles in the following triangles. What types of right angled triangle are these triangles?
- Label the hypotenuse as "hyp". With respect to the 45° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the table below.

Marked Angle Size $=45^{\circ}$	\|opp//mm	\|hyp/mm	\|adj/mm	$\begin{aligned} & \frac{\text { opp }}{\text { hyp }} \\ & \text { (for and } \\ & \hline \end{aligned}$	$\text { gle } \left.=45^{\circ}\right)$	$\frac{\text { adj }}{\text { hyp }}$ (for an	$\left.g \mid e=45^{\circ}\right)$	$\frac{\mathrm{opp}}{\mathrm{adj}}$ (for	$\left.\mathrm{gle}=45^{\circ}\right)$
				fraction	decimal	fraction	decimal	fraction	decimal
T1									
T2									
T3									
T4									
T5									
Mean Value (correct to 2 decimal places)									

Student Activity 6

Calculating ratios for similar right angled triangles with angles of 50°

- Measure and label the 90° and the 50° angles in the following triangles. What is the measure of the third angle?
- Label the hypotenuse as "hyp". With respect to the 50° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the Table below.

| Marked
 Angle $\text { Size }=50^{\circ}$ | \|opp|/mm | \|hyp|/mm | \|adj//mm | $\begin{aligned} & \frac{\text { opp }}{\text { hyp }} \\ & \text { (for ang } \end{aligned}$ | $\left.e=50^{\circ}\right)$ | $\begin{aligned} & \frac{\text { adj }}{\text { hyp }} \\ & \text { (for an } \\ & \hline \end{aligned}$ | $\text { gle }=50^{\circ} \text {) }$ | $\frac{\mathrm{opp}}{\mathrm{adj}}$
 (for an | $\text { gle }=50^{\circ} \text {) }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | fraction | decimal | fraction | decimal | fraction | decimal |
| T1 | | | | | | | | | |
| T2 | | | | | | | | | |
| T3 | | | | | | | | | |
| T4 | | | | | | | | | |
| T5 | | | | | | | | | |
| Mean Value (correct to 2 decimal places) | | | | | | | | | |

Student Activity 7

Calculating ratios for similar right angled triangles with angles of 60°

- Measure and label the 90° and the 60° angles in the following triangles. What is the measure of the third angle?
- Label the hypotenuse as "hyp". With respect to the 60° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the table below.

| Marked Angle Size $=60^{\circ}$ | \|opp|/mm | \|hyp|/mm | \|adj//mm | $\frac{\text { opp }}{\text { hyp }}$
 (for ang | $\left.l e=60^{\circ}\right)$ | $\begin{array}{\|l\|} \hline \frac{\text { adj }}{\text { hyp }} \\ \text { (for an } \\ \hline \end{array}$ | $\text { gle }=60^{\circ} \text {) }$ | $\begin{array}{\|l\|} \hline \frac{\text { opp }}{\text { adj }} \\ \text { (for a } \\ \hline \end{array}$ | $\text { gle }=60^{\circ} \text {) }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | fraction | decimal | fraction | decimal | fraction | decimal |
| T1 | | | | | | | | | |
| T2 | | | | | | | | | |
| T3 | | | | | | | | | |
| T4 | | | | | | | | | |
| T5 | | | | | | | | | |
| Mean Value (correct to 2 decimal places) | | | | | | | | | |

Student Activity 8

Calculating ratios for similar right angled triangles with angles of 70°

- Measure and label the 90° and the 70° angles in the following triangles. What is the measure of the third angle?
- Label the hypotenuse as "hyp". With respect to the 70° angle, label the other sides as "adj" for adjacent and "opp" for opposite.
- Complete the table below.

| Marked
 Angle $\text { Size }=70^{\circ}$ | \|opp|/mm | \|hyp|/mm | \|adj//mm | $\begin{aligned} & \frac{\text { opp }}{\text { hyp }} \\ & \text { (for ang } \end{aligned}$ | $\text { gle }=70^{\circ} \text {) }$ | $\begin{array}{\|l} \hline \frac{\text { adj }}{\text { hyp }} \\ \\ \text { (for an } \\ \hline \end{array}$ | $\text { gle }=70^{\circ} \text {) }$ | $\begin{array}{\|l\|} \hline \text { opp } \\ \hline \text { adj } \\ \text { (for an } \\ \hline \end{array}$ | $\text { gle }=70^{\circ} \text {) }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | fraction | decimal | fraction | decimal | fraction | decimal |
| T1 | | | | | | | | | |
| T2 | | | | | | | | | |
| T3 | | | | | | | | | |
| T4 | | | | | | | | | |
| T5 | | | | | | | | | |
| Mean Value (correct to 2 decimal places) | | | | | | | | | |

Student Activity 9

Master table of class results for ratios of sides in

 right angled triangles| Angle/ ${ }^{\circ}$ | $\frac{o p p}{h y p}$ | Check | $\frac{a d j}{h y p}$ | Check | $\frac{o p p}{a d j}$ | Check |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 30° | | | | | | |
| 40° | | | | | | |
| 45° | | | | | | |
| 50° | | | | | | |
| 60° | | | | | | |
| 70° | | | | | | |

Student Activity 10

Using the master table of class results answer the following questions

1. What do you notice about $\sin 30^{\circ}$ and $\cos 60^{\circ}$? \qquad
\qquad
2. What do you notice about $\cos 30^{\circ}$ and $\sin 60^{\circ}$? \qquad
\qquad
3. Can you explain what you have noticed using diagrams?
4. How would you describe angles 30° and 60° ? \qquad
\qquad
5. Can you find similar examples in the master table? \qquad
\qquad
6. For what angle in a right angled triangle is the opposite side one half of the hypotenuse? \qquad

Draw a diagram to illustrate your answer.
7. For what angle in a right angled triangle are the opposite and adjacent sides equal?
\qquad
8. Calculate $\frac{\operatorname{Sin} A}{\operatorname{Cos} A}$ for each angle A. Compare this to the value of Tan A. What do you notice? Can you justify the answer? \qquad
\qquad
\qquad

