WS07.02 Exponential Functions

Aim: To study the properties of exponential functions and learn the features of their graphs

Sect	ection A - Activity 1: The Exponential Function, $f(x) = 2^x$.					
1.	For f(For $f(x) = 2^x$:				
	(i)	The base of $f(x) = 2^x$ is				
	(ii)	The exponent of $f(x) = 2^x$ is				
	(iii)	What is varying in the function $f(x) = 2^x$?				
	(iv)	What is constant in the function $f(x) = 2^x$?				
2.	For f(x What a	x) = 2 ^x : are the possible inputs i.e. values for x (the domain)? Natural numbers Integers Real numbers				
3.	Set up	a table of values and draw the graph of $f(x) = 2^x$ on your whiteboard:				

X	2 ^x	$y = \overline{f(x)}$
-4	2-4	1/16
-3		
-2		
-1		
0		
1		
2		
3		
4		

- **4.** Describe the graph of $f(x) = 2^x$:
 - (i) Is it a straight line?
 - (ii) Is y = f(x) increasing or decreasing as x increases?
 - (iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3.

What do you notice?

(iv) Describe how the curvature/rate of change is changing.

5. For $f(x) = 2^x$:

(i)	What are the possible outputs (range) for $f(x) = 2^x$.
(ii)	Is it possible to have negative outputs? Explain why?
(iii)	What happens to the output as <i>x</i> decreases?
(iv)	Is an output of 0 possible? Why do you think this is?
(v)	What are the implications of this for the <i>x</i> -intercept of the graph?
(vi)	What is the y-intercept of the graph of $f(x) = 2^x$?

Section A - Activity 2: The Exponential Function, $g(x) = 3^x$.

1. For $g(x) = 3^{x}$: (i) The base of $g(x) = 3^{x}$ is (ii) The exponent of $g(x) = 3^{x}$ is (iii) What is varying in the function $g(x) = 3^{x}$? (iv) What is constant in the function $g(x) = 3^{x}$? 2. For $g(x) = 3^{x}$:

What are the possible inputs i.e. values for *x* (the domain)?

Natural numbers	
Integers	
Rational numbers	

Irrational numbers	
Real numbers	

3. Set up a table of values and draw the graph of $g(x) = 3^x$ on your whiteboard:

X	3 ^x	y = g(x)
-4	3-4	1/ ₈₁
-3		
-2		
-1		
0		
1		
2		
3		
4		

- 4. In relation to the graph of $g(x) = 3^x$:
 - (i) Is it a straight line?
 - (ii) Is y = g(x) increasing or decreasing as x increases?
 - (iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3.

What do you notice?

(iv) Describe how the curvature/rate of change is changing.

5. For $g(x) = 3^x$:

(i)	What are the possible outputs (range) for $g(x) = 3^x$.
(ii)	Is it possible to have negative outputs? Explain why?
(iii)	What happens to the output as x decreases?
(iv)	Is an output of 0 possible? Why do you think this is?
(v)	What are the implications of this for the <i>x</i> -intercept of the graph?
(vi)	What is the y-intercept of the graph of $g(x) = 3^x$?

Section A - Activity 3: Compare the graph of $f(x) = 2^x$ with the graph of $g(x) = 3^x$.

- 1. How are they similar and how do they differ?
- 2. Consider the relations $\{(x,y) | x \in \mathbb{R}, y \in \mathbb{R}, y = 2^x\}$ and $\{(x,y) | x \in \mathbb{R}, y \in \mathbb{R}, y = 3^x\}$.

Are they t	functions?	Explain.
------------	------------	----------

3. What name do you think is given to this type of function and why do you think it is given this name?

Section A - Activity 4: Understand the characteristics of $f(x) = a^x$, a > 1.

- 1. What is the domain of $f(x) = a^x$, a > 1?
- **2.** In relation to the graph of $f(x) = a^x$, a > 1.
 - (i) Is it a straight line?
 - (ii) Is y = f(x) increasing or decreasing as x increases?
 - (iii) Does it have a maximum value?
 - (iv) Does it have a minimum value?
 - (v) Describe how its curvature/rate of change is changing.

3. What is the range of $f(x) = a^x$, a > 1?

4. What is the x-intercept of the graph $f(x) = a^x$, a > 1?

5. What is the y-intercept of the graph $f(x) = a^x$, a > 1?

Section B - Activity 1: The Exponential Function, $f(x) = \left(\frac{1}{2}\right)^x$.

1.	For $f(x) = \left(\frac{1}{2}\right)^x$:						
	(i)	The base of $f(x) = \left(\frac{1}{2}\right)^x$ is					
	(ii)	The expone	ent of $f(x)$	$(x) = \left(\frac{1}{2}\right)^{x}$ is	5		
	(iii)	What is var	rying in th	e function	$f(\mathbf{x}) = \left(\frac{1}{2}\right)^{\mathbf{x}}?$		
	(iv)	What is cor	nstant in t	he functio	$n f(x) = \left(\frac{1}{2}\right)^{x} ?$		
2.	For f(x	$=\left(\frac{1}{2}\right)^{x}$:					
	What a	(2)	ible input	sio value	$r_{\rm r}$ for x (the domain)?		
	What a	re the poss	Natural n	umbers	Irrational numbers		
		Integers Real numbers					
			Rational	numbers			
3.	6 .				$(1)^{x}$		
	Set up	a table of v	alues and	draw the	graph of $f(x) = \left(\frac{1}{2}\right)$ on your whiteboard:		
		X	$\left(\frac{1}{2}\right)^{x}$	$\mathbf{y} = f(\mathbf{x})$			
		-4	$(1/2)^{-4}$	16			
		-3					
		2					
		1					
		0					
		2					
		3					
		4					

- **4.** In relation to the graph of $f(x) = \left(\frac{1}{2}\right)^{x}$:
 - (i) Is it a straight line?
 - (ii) Is y = f(x) increasing or decreasing as x increases?
 - (iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3.

What do you notice?

- (iv) Describe how the curvature/rate of change is changing.
- 5. For $f(x) = \left(\frac{1}{2}\right)^x$: (i) What are the possible outputs (range) for $f(x) = \left(\frac{1}{2}\right)^x$. (ii) Is it possible to have negative outputs? Explain why? (iii) What happens to the output as x decreases? (iv) Is an output of 0 possible? Why do you think this is? (v) What are the implications of this for the x-intercept of the graph? (vi) What is the y-intercept of the graph of $f(x) = \left(\frac{1}{2}\right)^x$?

Section B - Activity 2: The Exponential Function, $g(x) = \left(\frac{1}{3}\right)^x$.

1.	For g($\mathbf{x}) = \left(\frac{1}{3}\right)^{\mathbf{x}} :$
	(i)	The base of $g(x) = \left(\frac{1}{3}\right)^x$ is
	(ii)	The exponent of $g(x) = \left(\frac{1}{3}\right)^x$ is
	(iii)	What is varying in the function $g(x) = \left(\frac{1}{3}\right)^x$?
	(iv)	What is constant in the function $g(x) = \left(\frac{1}{3}\right)^x$?
2.	For g(x	$\mathbf{x} = \left(\frac{1}{3}\right)^{\mathbf{x}} :$
	What a	are the possible inputs i.e. values for x (the domain)? Natural numbers Irrational numbers I Integers Real numbers Rational numbers
3.	Set up	a table of values and draw the graph of $g(x) = \left(\frac{1}{3}\right)^x$ below on your whiteboard:

X	$\left(\frac{1}{3}\right)^{x}$	y = g(x)
-4	$\left(\frac{1}{3}\right)^{-4}$	81
-3		
-2		
-1		
0		
1		
2		
3		
4		

- **4.** In relation to the graph of $g(x) = \left(\frac{1}{3}\right)^{x}$:
 - (i) Is it a straight line?
 - (ii) Is y increasing or decreasing as x increases?
 - (iii) From the table above, find the average rate of change over different intervals. For example from -2 to -1 and 2 to 3.

What do you notice?

- (iv) Describe how the curvature/rate of change is changing.
- 5. For $g(x) = \left(\frac{1}{3}\right)^x$: (i) What are the possible outputs (range) for $g(x) = \left(\frac{1}{3}\right)^x$. (ii) Is it possible to have negative outputs? Explain why? (iii) What happens to the output as x decreases? (iv) Is an output of 0 possible? Why do you think this is? (v) What are the implications of this for the x-intercept of the graph? (vi) What is the y-intercept of the graph of $g(x) = \left(\frac{1}{3}\right)^x$?

Section B - Activity 3: Compare the graph of $f(x) = \left(\frac{1}{2}\right)^{x}$ with the graph of g(x) =

1. How are they the same and how do they differ?

2. Consider the relations $\left\{ (x,y) \middle| x \in \mathbb{R}, y \in \mathbb{R}, y = \left(\frac{1}{2}\right)^x \right\}$ and $\left\{ (x,y) \middle| x \in \mathbb{R}, y \in \mathbb{R}, y = \left(\frac{1}{3}\right)^x \right\}$.

Are	they	functions?	Explain.
-----	------	------------	----------

3. What name do you think we give to this type of function and why do you think it is given this name?

Section B - Activity 4: Understand the characteristics of $f(x) = a^x$, 0 < a < 1.

- 1. What is the domain of $f(x) = a^x$, 0 < a < 1? In relation to the graph of
- 2. $f(x) = a^x, 0 < a < 1.$
 - (i) Is it a straight line?
 - (ii) Is y = f(x) increasing or decreasing as x increases?
 - (iii) Does it have a maximum value?
 - (iv) Does it have a minimum value?

(iv) Describe how its curvature/rate of change is changing.

3. What is the range of $f(x) = a^x$, 0 < a < 1?

4. What is the x-intercept of the graph $f(x) = a^x$, 0 < a < 1?

5. What is the *y*-intercept of the graph $f(x) = a^x$, 0 < a < 1?

Note: For all the following, you should assume that the domain is \mathbb{R} . Section C - Activity 1: Compare the graph of $f(x) = 2^x$ with the graph of $f(x) = \left(\frac{1}{2}\right)^2$. How are the graphs similar? 1. How are the graphs different? 2. 3. Rewrite $f(x) = \left(\frac{1}{2}\right)^{x}$ in the form $f(x) = 2^{k}$. What transformation maps the graph of $f(x) = 2^x$ onto the graph of $f(x) = \left(\frac{1}{2}\right)^x$? 4. Section C - Activity 2: Compare the graph of $g(x) = 3^x$ with the graph of $g(x) = \left(\frac{1}{3}\right)^x$. How are the graphs similar? 1. 2. How do the graphs differ? 3. Rewrite $g(x) = \left(\frac{1}{3}\right)^{k}$ in the form $g(x) = 3^{k}$. **4.** What transformation maps the graph of $g(x) = 3^x$ onto the graph of $g(x) = \left(\frac{1}{3}\right)^x$?

1. If $f(x) = a^x$, $a \in \mathbb{R}$, a > 1, then the *properties* of the exponential *function* are:

2. If $f(x) = a^x$, $a \in \mathbb{R}$, a > 1, then the *features* of the exponential *graph* are:

3. If $f(x) = a^x$, $a \in \mathbb{R}$, 0 < a < 1, then the *properties* of the exponential *function* are:

4. If $f(x) = a^x$, $a \in \mathbb{R}$, 0 < a < 1, then the *features* of the exponential *graph* are:

Section C - Activity 4: Which of the following equations represent exponential functions?

Function	ls it an exponential Function? Yes/No	Reason
$f(x) = \left(\frac{1}{2}\right)^{x}$		
$f(\mathbf{x}) = \mathbf{x}^2$		
$f(\mathbf{x}) = (-2)^{\mathbf{x}}$		
$f(x) = 2(3)^x$		
$f(\mathbf{x}) = -2^{\mathbf{x}}$		
$f(x) = 3(x)^{\frac{1}{2}}$		
$f(x)=(0.9)^x$		

Problem Solving Questions on Exponential Functions

Note: Extension Activities are required to strengthen students' abilities in the following areas from the syllabus:

Level	Syllabus	Page
JCHL	$f(x) = a2^x$ and $f(x) = a3^x$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 31
LCFL	$f(x) = a2^x$ and $f(x) = a3^x$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 32
LCOL	$f(x) = ab^x$, where $a \in \mathbb{N}$, $b, x \in \mathbb{R}$.	Page 32
LCHL	$f(x) = ab^x$, where $a, b, x \in \mathbb{R}$.	Page 32

1. A cell divides itself into two every day. The number of cells *C* after *D* days is obtained from the function:

 $C = 2^{D}$

- (a) Draw a graph of the function for $0 \le D \le 6$.
- (b) Find the number of cells after 15 days.
- 2. The value of a mobile phone *M* (in cents) after *T* years can be obtained from the following function:

$$M = k \left(\frac{1}{2}\right)^{T}$$
, where k is a constant.

- (a) Draw a graph of the function for $0 \le T \le 6$.
- (b) Find the value of k given that the value of the mobile phone after 3 years is $\in 100$.
- (c) Find the value of the phone after 7 years.
- 3. The number of bacteria *B* in a sample after starting an experiment for *m* minutes is given by: $B = 50(3)^{0.04m}$
 - (a) Find the number of bacteria in the sample at the start of the experiment.
 - (b) Find the number of bacteria in the sample after starting the experiment for 3 hours.
- 4. The graph of $f(x) = ka^x$ is shown:
 - (a) Find the value of *k* and *a*.
 - (b) Hence find the value of f(x)when x = 8.

Q5. Olive finds that the number of bacteria in a sample doubles every 5 hours. Originally there are 8 bacteria in the sample.

Complete the table below:

Number of hours (hrs.)	Number of bacteria (b)
0	8
5	
10	
15	

- (a) Express *b* in terms of *h*.
- (b) Find the number of bacteria in the sample after 13 hours.
- (c) How many hours later will the number of bacteria be more than 100.
- Q6. When a microwave oven is turned on for x minutes the relationship between the temperature C° inside the oven is given by $C(x) = 500 480(0.9)^{x}$ where $x \ge 0$.
 - (a) Find the value of C(0).
 - (b) Explain the meaning of C(0).
 - (c) Can the temperature inside the microwave oven reach $550C^{\circ}$?

Answers

Q1 (b) 32,768 cells, Q2 (b) €800 (c) €6.25, Q3 (a) 50 (b) 136,220 bacteria, Q4 (a) k = 2, a = 3 (b) 13,122, Q5 (b) $b = 8(2)^{\frac{h}{5}}$ (c) 48 bacteria (d) 18.22 hrs., Q6 (a) 20° C (c) No