	Come up with a specific question to answer	
Pose Question & Collect Data	 Summary Question: (one variable) e.g., Find the typical height of the students in the class. Comparison Question: (one variable) e.g., Do boys or girls spend more time on the internet? Relationship Question: (two variables) e.g., Do students who study more do better in exams? 	
	Collect Data	
	 What data do I need? Categorical (Qualitative): Nominal, Ordered Numerical (Quantitative): Discrete, Continuous What sampling method will I use? Simple Random, Stratified, Cluster, Quota How will I eliminate bias? random selection, careful questioning, who, when & where What will the source of data be? Primary/Secondary, questionnaire, C@S, official records 	
	Analyse the Data - Desc	riptive Statistics
yse the Data	Statistics on the sample data Distribution	
	Statistical distribution describes the number of times each possible outcome occurs in a sample. Distribution Table / Frequency Distribution Table / Grouped Frequency Distribution Table	
	Choose the Appropriate Visual Representation	
	Nominal (male/female): Bar Chart, Line Plot (Dot Plot), Pie Chart Ordinal (never/sometimes): Bar Chart, Line Plot, Pie Chart Discrete (no. of cars/age in years): Bar Chart, Pie Chart, Line Plot, Stem and Leaf Plot Continuous (height/foot length): Histogram, Stem and Leaf Plot	
	 Bar Charts good for comparing frequencies Pie Charts good for showing proportion of the total sample Dot plots useful for representing a small sample. Particularly good for showing central tendency, dispersion and shape. Stem and Leaf Plots useful for representing a sample of discrete or continuous data. Particularly good for showing central tendency, dispersion and shape. Summary of the Data (Univariate) 	
	 Central Tendency → Mean → Median → Mode 	
Ana	 Dispersion (Spread, Variability) → Range → IQR: Inter Quartile Range → Standard Deviation 	The Five-Number Summary 1. Maximum 2. Minimum 3. Median
	 Shape → Gaps/ Clusters → Outliers → Modality 	3. Median4. First Quartile5. Third Quartile
	 → Symmetric → Bell Shaped → Skewed → Normal 	
	Comparison of Data (Univariate)	
	All of the above summary techniques used to compare sets of data Relationship between Variables (Bivariate)	
	 Scatterplots Correlation Coefficient 	

Interpretation of the Results to Answer the Question Posed

Non-Inferential Statistics

Making a generalisation about the sample data or when the sample data is the same as the population

- Interpreting the summary statistics to answer the question posed.
- Making a comparison between summary statistics: differences/similarities.
- Empirical Rule: Interpreting a Normal Distribution (for a normal distribution, almost all data will fall within three standard deviations of the mean). Otherwise known as the 68 95 99.7 rule.

• Z-scores: A z-score gives us an indication of how unusual a value is because it tells us how far it is from the mean on a Standardised Distribution Curve. If the data value sits right at the mean, it's not very far at all and its z-score is 0. A z-score of 1 tells us the data value is one standard deviation above the mean, while a z-score of -1 tells us that the value is one standard deviation below the mean.

Inferential Statistics

The data is taken a step further to make a generalisation about the population from which the sample is taken.

No deterministic statements

- We cannot make a deterministic (definite/absolute) statement about the population because the sample we took was just our best attempt to represent the population. There will be some variation.
- The vocabulary used in statements about the population must not be deterministic use: "tends to", "estimation", "inference"

Correlation and Association

- Is there an association between the two variables? Causation: Does one variable change because the other variable changes?
- Is there a correlation between the two variables? What does the correlation suggest about the population? E.g., One variable "tends to" increase as the other variable increases.

Margin of Error

- Since the sample is not the same size as the population there is a margin of error that accompanies any inferred statistic about the population.
- The bigger the sample, the smaller the margin of error, $\frac{1}{\sqrt{n}}$.

Hypothesis Testing using the Margin of Error

• Using the margin of error and the statistics from the sample to test if a statement about the population could be true.

Terms: Descriptive/Non-Inferential/Inferential Statistics for teacher's information only.