Activity 1 Making the Most of a Euro

Invest $€ 1$ for 1 year at 100% compound Interest.
Investigate the change in the final value, if the annual interest rate of 100% is compounded over smaller and smaller time intervals.

The interest rate i per compounding period is calculated by dividing the annual rate of 100% by the number of compounding periods per year.

Compounding period	Final value, $F=P(1+i)^{t}$, where i is the interest rate for a given compounding period and t is the number of compounding periods per year. Calculate F correct to 8 decimal places.
Yearly $i=1$	$F=1(1+1)^{1}=2$
Every 6 mths. $i=\frac{1}{2}$	$F=1\left(1+\frac{1}{2}\right)^{2}=2.25$
Every 3 mths. $i=$	
Every mth. $i=$	
Every week. $i=$	
Every day. $i=$	
Every hour. $i=$	
Every minute. $i=$ Every second. $i=$	

What if the compounding period was 1 millisecond ($10^{-3} \mathrm{~s}$), 1 microsecond ($10^{-6} \mathrm{~s}$) or 1 nanosecond $\left(10^{-9} \mathrm{~s}\right)$? What difference would it make?

Will F ever reach 3? How about 2.8?

