Some Number Problems Leading to a Method for Teaching Proof

- 1. Show that a whole number is divisible by 3 if its digits add up to a multiple of 3. So, for example 321 is divisible by 3 as 3+2+1=6, which is a multiple of 3^{1} .
- 2. Show that a whole number is divisible by 9 if its digits add up to a multiple of 9. So, for example 972 is divisible by 9 as 9+7+2=18, which is a multiple of $9.^2$.
- 3. Show that a whole number is divisible by 4 if its last two digits are divisible by 4.³
- 4. Prove that the sum of two odd numbers is always even.
- 5. Prove that the product of two odd numbers is always odd.
- 6. Prove that the product of an odd and an even number is always even.
- 7. Show that $(54918)^2$ and $(84648)^2$ are Pandigital Numbers. In 1727, John Hill of Staffordshire, England claimed that the smallest Pandigital square was $(11826)^2$. Was he correct?⁴
- 8. A number is said to be handsome if it can be written as the sum of its digits written to some power. Thus 24 is handsome as $24 = 2^3 + 4^2$. Show that 43,63,89 and 132 are handsome⁵.
- 9. Find the weight of the smallest column of air that will completely enclose the Eiffel tower. Take the density of air to be 1.22521 kg/m^3 .
- 10. Show the next three patterns in the series:

Show that the sum of two consecutive patterns is a perfect square.

⁴ Elementary Number Theory in 9 Chapters, Tattersall, Pge 43

¹ Maths 1001, Elwes, Pge 19

² Ibid, Pge 19

³ Ibid, Pgw 20

⁵ Ibid, Pge 44

- 11. Show that every perfect square is either a multiple of three or one more than a multiple of 3. (i.e. they take the form 3k and 3k+1)⁶.
- 12. Show that every perfect square takes the form 4k or 4k+1, where k is an integer.
- 13. Use the result of Question 13 to show that no number in the following sequence 1,11,111,1111,1111,K can be a perfect square.

⁶ Elementary Number Theory, Burton, Pge 15