Teaching & Learning Plan

Inferential Statistics for Means

Leaving Certificate Syllabus

The Teaching & Learning Plans are structured as follows:

Aims outline what the lesson, or series of lessons, hopes to achieve.

Prior Knowledge points to relevant knowledge students may already have and also to knowledge which may be necessary in order to support them in accessing this new topic.

Learning Outcomes outline what a student will be able to do, know and understand having completed the topic.

Relationship to Syllabus refers to the relevant section of either the Junior and/or Leaving Certificate Syllabus.

Resources Required lists the resources which will be needed in the teaching and learning of a particular topic.

Introducing the topic (in some plans only) outlines an approach to introducing the topic.

Lesson Interaction is set out under four sub-headings:

- i. **Student Learning Tasks Teacher Input:** This section focuses on possible lines of inquiry and gives details of the key student tasks and teacher questions which move the lesson forward.
- ii. **Student Activities Possible Responses:** Gives details of possible student reactions and responses and possible misconceptions students may have.
- iii. **Teacher's Support and Actions:** Gives details of teacher actions designed to support and scaffold student learning.
- iv. **Assessing the Learning:** Suggests questions a teacher might ask to evaluate whether the goals/learning outcomes are being/have been achieved. This evaluation will inform and direct the teaching and learning activities of the next class(es).

Student Activities linked to the lesson(s) are provided at the end of each plan.

Teaching & Learning Plans:

TITLE

Aims¹

The aim of this series of lessons is to enable students to:

- To understand why sampling is important.
- To understand there is a link between statistics and probability.
- To understand the phrase "inferential statistics".
- Understand the link between 95% confidence and the Empirical Rule.
- To recognise how sampling variability influences the use of sample information to make statements about the population.
- To understand what factors we must keep in mind when we use sample information to make statements about the population.
- To understand the idea of a confidence interval.
- To understand that a sample mean might not be the same as the population mean.
- To understand the idea of a hypothesis test.
- To understand how to conduct a hypothesis test on a population mean.
- To apply knowledge and skills relating to statistics to solve problems.
- To use mathematical language, both written and spoken, to communicate understanding effectively.

Prior Knowledge

Students have prior knowledge of:

- Quantifying probabilities from Teaching and Learning Plan 1: Introduction to Probability
- Task on Household sizes from page 2 of the Workshop 10 booklet on www.projectmaths.ie
- The Empirical Rule
- Sampling Variability
- The difference between a population and a sample.
- Simple random sampling
- Describing the shape, centre and spread of distributions
- The Data Handling Cycle

¹ This Teaching & Learning Plan illustrates a number of strategies to support the implementation of *Literacy and Numeracy for Learning and Life: the National Strategy to Improve Literacy and Numeracy among Children and Young People 2011-2020* (Department of Education & Skills 2011). Attention to the recommended strategies will be noted at intervals within the Lesson Interaction Section of this Teaching and Learning Plan.

Learning Outcomes

As a result of studying this topic, students will be able to:

- Understand the effect of sampling variability on our ability to use the mean of a single sample to make a statement about the mean of a population.
- Understand the existence of the distribution of sample means.
- Describe the shape of the distribution of sample means for a given population, including calculating the centre of this distribution and its standard deviation.
- Construct a 95% confidence interval for the mean of a single sample using z-scores.
- Construct a 95% confidence interval for the mean of a population using z-scores.
- Conduct a hypothesis test on the population mean using a 95% confidence interval.
- Conduct a hypothesis test on the population mean using p-values.
- Understand how inferential statistics might be used in a range of every-day applications.

Catering for Learner Diversity

In class, the needs of all students, whatever their level of ability level, are equally important. In daily classroom teaching, teachers can cater for different abilities by providing students with different activities and assignments graded according to levels of difficulty so that students can work on exercises that match their progress in learning. Less able students, may engage with the activities in a relatively straightforward way while the more able students should engage in more open-ended and challenging activities.

In interacting with the whole class, teachers can make adjustments to meet the needs of all of the students.

Apart from whole-class teaching, teachers can utilise pair and group work to encourage peer interaction and to facilitate discussion. The use of different grouping arrangements in these lessons should help ensure that the needs of all students are met and that students are encouraged to articulate their mathematics openly and to share their learning.

Relationship to Leaving Certificate Syllabus

Sub-Topic	Learning Out	comes					
Students learn about	Students working at OL should be able to	In addition students working at HL should be able to					
1.3 Outcomes of random processes		 -use simulations to explore the variability of sample statistics from a known population, to construct sampling distributions and to draw conclusions about the sampling distribution of the mean – solve problems involving reading probabilities from the normal distribution tables 					
1.4 Statistical reasoning with an aim to becoming a statistically aware consumer	 discuss populations and samples decide to what extent conclusions can be generalised 						
1.7 Analysing, interpreting and drawing inferences from data	 recognise how sampling variability influences the use of sample information to make statements about the population use appropriate tools to describe variability drawing inferences about the population from the sample interpret the analysis and relate the interpretation to the original question interpret a histogram in terms of distribution of data make decisions based on the empirical rule recognise the concept of a hypothesis test 	 construct 95% confidence intervals for the population mean from a large sample and for the population proportion, in both cases using z tables use sampling distributions as the basis for informal inference perform univariate large sample tests of the population mean (two-tailed z-test only) use and interpret p-values 					

Resources Required

Formulae and Tables Booklet, Whiteboards, rulers, *GeoGebra*, calculators and a pack of 200 schoolbag weights (see appendix D)

	Lesson Interaction							
Student Learning Tasks:	Student Activities: Possible and Expected Responses	Teacher's Supports and Actions	Checking Understanding					
Teacher Input								
Section A – Introduci	ng sampling variability and	its impact on statistical inference						
 In today's lesson we are going to carry out a statistical investigation. You should recall that when we do a statistical investigatior we follow the datahandling cycle. We would like to 		 Have a poster of the data-handling cycle ready under Section A of the board plan. 	 Do students recall that we follow the data-handling cycle when carrying out a statistical investigation? 					
answer the following question: "What is the average weight of an Irish post-primary student's school bag?"		 Beside Stage 1 of the data-handling cycle write the question "What is the average weight of an Irish post-primary student's schoolbag? Identify this as Stage 1 of the data-handling cycle. 	 Do students recognise that Stage 1 of the data-handling cycle requires a question to be asked? 					
 When we say "Irish post primary students" how many students do we mean? 	 A lot. 50,000 students. 360,000 students. All of them. All post-primary students in Ireland. 		• Do students understand that when we say "Irish post-primary students" we mean all of them?					
 In statistics when we refer to "all" or "everybody", what 	• The population.	 Write the word "population" in the word bank on the board. Encourage students to write their own description of the term in their copybooks. 	• Do students recall that, in statistics, the complete set of elements, e.g. people/items/units is known as the population?					

•	name do we give to this group? So we would like to know the average school-bag weight of the population of Irish post-primary students. In other words, we are interested in answering a question			 Do students understand that when we say "Irish post-primary students" we mean the population of Irish post-primary students or all Irish post-primary students?
•	When we say "average", what do we mean?	 The typical value of a set of data. The value that the data is centred on. The mean. The mode. The mean. The central tendency of a set of data. 		 Do students understand that there are three measures of average?
•	For the purposes of our investigation we are going to use the mean as our measure of average.			 Do students understand that from now on when we talk about the average we mean the mean?
•	Can anybody suggest how we might find the mean weight of an Irish post-primary student's school bag?	 We need to survey some people. We need some data. We could ask everybody here in the room. 	 Highlight the second stage of the data-handling cycle "Collect Data" on the board. 	 Do students recognise that, to answer the question, we need some data?
•	If we were to gather the data ourselves,	We could ask them all.We could ask some students.	 Beside Stage 2 of the data-handling cycle add the terms "census" and "sample". 	 Do students understand that, in general, when gathering data you

	how many students could we ask?	•	We could take a sample of students. 100. 1,000. All the students in our school.				have two choices - you can survey the entire population or a subset of the population?
•	You have suggested two different approaches - one where you ask all students and one where you ask some students. Can you explain why you might choose one approach over the other?	•	Asking everybody should provide a more accurate answer. Asking everybody is expensive and takes a long time. It wouldn't be possible to ask every second-level student. Sampling is faster and cheaper. If you sample you mightn't get an accurate answer. When you sample you have to be careful to make sure the sample is representative.	•	Add some of the important advantages and disadvantages of sampling vs. taking a census to data- handling cycle.	•	Do students recognise that there are advantages and disadvantages to both ways of collecting data? Can students identify the advantages and disadvantages of each way of collecting data?
•	For many reasons you have just discussed, when answering a question in statistics, we usually use data from a single sample instead of data from the entire population. Note: There are times when the entire population is included when gathering data.	•		•	Circle the word "sample" beside stage 2 of the data- handling cycle.	•	 Do students recognise that sampling is used in the majority of statistical investigations? Do students understand why sampling is used in the majority of statistical investigation? Do students understand that the use of sampling raises the question of how accurate the results of a statistical investigation are?

	The census is one such			
	case.			
•	You pointed out one	•	• Circle the term "accurate" beside Stage 2 of the data-	
	of the disadvantages		handling cycle.	
	to sampling – that of			
	accuracy.			
•	Because of this, we			
	are going to			
	investigate if it's			
	possible to use the			
	result from a single			
	sample to accurately			
	answer a question			
	about a population.		 Show students container of cards. 	 Do students understand that I have
•	To investigate this, I		• Show students the envelope with the population mean	created a population so that I can
	have created		sealed in it. Pin it to the board.	investigate how reliable a sample
	(simulated) my own		• Under Section A of the board plan, write the heading	is for answering a question about a
	population of students		"Population". Underneath it write "No. of students in	population?
	and we are going to		population = 200" and "Mean schoolbag weight = ?".	 Do students understand that each
	see if we can use a		Encourage each group of students to replicate what's	unit of my population is
	single random sample		written on the board on their own miniature	represented by a piece of card?
	from this population		whiteboard.	 Do students understand that the
	to find the mean of			number on each card is the weight
	the population.			of one student's schoolbag?
•	I have used pieces of			 Do students understand that we
	card to simulate a			are going to use the simulated
	population of students			population to see if it's possible to
	or more accurately to			use a single sample to determine
	simulate my			the mean of a population?
	population of			
	schoolbag weights.			
	There are 200 pieces			
	of card (or 200			

	schoolbag weights) in					
	a population. Each					
	card has the weight (in					
	kilograms) of one					
	student's schoolbag.					
•	I have determined the					
	mean school bag					
	weight for the					
	population and I've					
	written it in this					
	envelope.					
•	We are now going to					
	see if, by choosing a					
	random sample from					
	my population, I can					
	find out what the					
	mean schoolbag					
	weight of the					
	population is.					
•	That is we are going to					
	see if it's possible to					
	use a single random					
	sample to answer a					
	question about a					
	population.					
•	In turns, I would like	•	Students choose a simple	•	Under Section A of the board plan add the number of	• Can students choose a simple
	each group to choose		random sample of 36 cards by		students in the population and in a single sample under	random sample?
	a simple random		drawing cards from the		the headings of "Population" and "Sample"	
	sample of 36		container.	•	Under Section A of the board plan, write "Calculate the	
	schoolbag weights				mean schoolbag weight" beside Stage 3 of the data-	
	(cards) from the				handling cycle.	
	container and			•	Under the headings of "Population" and "Sample" add	
	calculate the mean				the following statement "Mean schoolbag weight = "	

	weight of the 36		Population No. of students in the population = 200	<u>Sample</u> No. of students in my sample = 36	
	schoolbags.	• By assigning a number to each	Mean schoolbag weight in the population =	Mean schoolbag weight in the sample z	
	How do we choose a	card and using a random-	 Encourage each group of stud 	lents to replicate what's	
	simple random	number generator to identify	written on the board in their	own copybooks.	
	Sample:	By shuffling the cards in the			
	• This is Stage 3 of the	container and drawing			
	data-handling cycle –	without looking			
	analyse the data.	without fooking.	 Distribute a copy of the instru 	uctions for using a	
			calculator to calculate the me	ean and standard deviation	
			of a dataset (see Appendix A	for details).	
•	 How do we calculate 		 Circulate to make sure studer 	nts are completing the task	
	the mean schoolbag	 Add up all the schoolbag 	correctly.		• Do students know how to use the
	weight?	weights in our sample and	 Encourage students to write to 	their results in the	STAT mode on their calculator to
		divide by 36.	appropriate space on their wi	niteboard.	calculate the mean of a dataset?
		 Enter the data in the 			
		calculator in statistics mode			
		and find the mean.			
		• Students calculate the mean			
	 I also want you to 		• Encourage students to take a	note of their standard	 Do students understand what
	calculate the standard		deviation.		standard deviation tells us about a
	deviation of your				set of data?
	sample.				
	 Can anybody suggest 	• To measure the variation in			
	why we might want to	our sample.			
	calculate the standard	• To understand how spread			
	deviation of our	out the values in our sample			
	sample?	are.			

		_		_			
		•	Because when you use the mean as your average you use	•			
			the standard deviation as your	r			
			spread.				
			to understand now close				
			sample are.				Can students use their calculator
			Students calculate the				to calculate the standard deviation
			standard deviation of their				of their sample?
			samples using their				
			calculators				
•	Group 1. could you tell	•	5.5 kg.	•	Under Section A of the board plan, write Group 1's		Is Group 1's result reasonable?
	me the mean				result under the heading "Sample".		
	schoolbag weight for	•	Note: This is a mean from one		Population Sample		
	students in your		particular sample.		No. of students in the population = 200 No. of students in my sample = 36		
	sample?		, ,	ľ	mean schoolbag weight in the population = 0,0 kg mean schoolbag weight in the sample = 0,0 kg		
•	I am now going to use			•	Under Section A of the board plan, add Group 1's result	t	
	the result from Group				to the appropriate location under the heading		
	1's sample to do what				"Population".		
	we set out to do – to			•	Beside Stage 4 of the data-handling cycle add in the		
	make a statement				statement "The mean weight of schoolbags belonging		
	about the entire				to students in the population is 5.5 kg".		
	population using a						
	single sample.						
•	The mean weight of						
	schoolbags belonging						
	to students in the						
	population is 5.5 kg.						
•	This is the final stage						
	in the data-handling						
	cycle – interpret the						
	results.						

•	So we've completed the four stages of our investigation. Are you happy with the answer	•	Yes. No I got a different answer. No – our group got a different mean.	•	Under Section A of the boa sample mean in the correc "Sample".	ard plan, write each group's It location under the heading		 Do students recognise that each group got a different value for the mean weight? Do students recognise the issue
	question?	•	No – If we used our group's result we'd have a different conclusion. We all got different answers. Why are we using Group 1's answer?	~	No, of students in the population = 200 Mean schoolbag weight in the population = 5,5 kg	No. of students in my sample = 36 Mean schoolbag weight in the sample = 5.5 kg 4.8 kg 4.9 kg 5.2 kg 4.6 kg 5.3 kg 5.1 kg 4.7 kg		single sample to make a statement about a population?
			How do we know Group 1's result is the correct one?					
•	The fact that we all get different means when we analyse a sample is known as sampling variability. Can you explain why we all get different means i.e. can you explain why sampling	•	Our samples were randomly chosen. We all chose different samples from the container. We chose our samples randomly so you wouldn't expect the answers to be the same. Every group's sample is made	•	Encourage students to disc sampling variability means its description into their co	cuss with each other what and to write the term and opybooks.	•	 Can students explain what sampling variability is? Do students understand why sampling variability occurs? Can students explain why sampling variability occurs?
•	variability occurs? The aim of this activity was to see if we can use a single sample to determine the mean schoolbag weight of students in a population. Because I simulated the population, I know		up of different values.	•	Encourage students to exp	lain their reasoning.		
	what the <u>population</u> <u>mean</u> is – remember							

•	it's written in the envelope on the board. Given what we've just discovered – how confident would you be that Group 1's mean is the same as the population mean?	 Not very confident. I'd say it's around the right answer. Reasonably confident. I don't think it's likely to be the same. 			•	Do students recognise the difficulty in using a single sample to make a statement about a population? Do students understand that sampling variability presents us with a problem when we try to use a single sample to make a statement about a population?
•	Can you explain to me why you're not very confident in Group 1's result?	 Well, it's just one of the possible results we could get. Because of sampling variability. Other groups got values different to Group 1. There's nothing special about Group 1's result. Maybe our result is the correct one. 	•	Encourage students to discuss their ideas with each other. Encourage each group to share their thinking with the other groups in the classroom.	•	Do students understand that Group 1's result is only one of the possible answers we can get when we sample?
•	You said Group 1's result was just one result you could get by choosing a sample of size 36 from a population of 200. Across the whole class we took 8 different samples. How many different samples could we take?	• A lot. • Thousands. • $\binom{200}{36}$ • $_{200}C_{36}$ • $\approx 4.5 \times 10^{46}$	•	If students are having difficulty answering this question, review combinations, through the use of examples.	•	Can students apply their knowledge of combinations to calculate the number of combinations which may be selected from a population of 200?

•	That is, how many	Note: This is not the correct		
	unique samples of size	number of unique combinations		
	36 could you choose	as there are a number of		
	from a population of	repeated weights in the		
	200?	population.		
•	Given this, what is the chance of the mean of a single sample being	Very small.Almost zero.Highly unlikely.	 Encourage students to explain their reasoning. 	 Do students understand that because there are so many different sample means, it is
	equal to the population mean?	• $\approx \frac{1}{4.5 \times 10^{46}}$ (Not correct ¹). • $\approx 2.2 \times 10^{-47}$ (Not correct ¹).		unlikely our sample mean will be the population mean?
•	Can you explain why this is so?	 It's not likely. If all means are equally likely then the chance is small. That'll depend on the number of different sample means you can calculate when choosing samples of size 36 from a population of 200. There are so many possible answers – the chance of mine being correct is tiny. There are so many different sample means you could get – the chance of landing on a value equal to the population mean is really small. There's a good chance that you'll get a sample mean which is not the same as the population mean. 		

		¹ This is not the correct number of unique combinations as there are a number of repeated weights in the population and different combinations will still vield the same mean.		
•	Let's see if our suspicions are correct. The mean weight of schoolbags in the population of students is 5.1 kg. Does group 1's result match this value?	• No.	 Open the envelope with the population mean written in it and show it to students. Amend the information under Section A of the board plan under the heading "Population" and beside Stage 4 of the data-handling cycle so that the correct population mean is now included. 	 Do students understand that there is little chance that the mean they obtained from their sample is the same as the population mean? Do students understand that μ means the mean of a population? Do students understand that x means the mean of a single
•	Did any group's sample get this result?	 No. No group got a mean of 5.1 kg but most of our answers were close. One group got the same as the population mean but we'd have no way of knowing this without knowing the population mean. 	• Amend the information under Section A of the board plan to include the correct notation for the population mean and for the sample mean. No. of students in the population = 200 Mean schoolbag weight in the population = 5.5 kg $\mu = 5.5$ kg $\mu = 5.5$ kg	sample?
•	We have shorthand notation to represent the mean of a population. We use the Greek letter μ to represent population mean. We also have shorthand notation to represent the mean of			

•	a single sample. We use \bar{x} to represent the mean of a single sample. In a real statistical investigation would we know if our sample mean was "the correct value"?	•	No. No – the only way we'd know that is if we knew the population mean and that's what we're trying to find out in the first place.			•	Do students understand that, even if their result was the same as the population mean, in a real statistical investigation (where the population mean is unknown) they'd have no way of knowing this?
•	So we have a problem. We want to use a single sample to answer a question about the population but, because of sampling variability, the chance of the mean of the sample being equal to the population mean is minimal.						
•	For this reason we cannot say that the mean of the population is equal to our sample mean.			•	Under Section A of the board plan, write the statement "Because of sampling variability, we cannot say that $\mu = \bar{x}$ ". Sketch a number line, mark in the population mean and use a different colour to mark in the sample mean	•	 Do students understand that they cannot assume that their sample mean is the same as the population mean? Do students understand that the chance of their sample mean being equal to the population mean is low? Do students understand that there is no way to know if the mean of

 Is it possible, then, to use a single sample to make a reliable statement about a population? 	 No. We can't say what the population mean is exactly. Maybe. All our answers are different but most of them are all around the population mean so we can estimate what the population mean is. We could say that the mean schoolbag weight for students in the population is around the mean of our single sample. 		 their sample is the same as the mean of the population? Do students understand that this presents a major problem if we want to use a single sample when answering a question about a population?
 From our limited number of sample means it appears as though the mean of a single sample tends to be close to the mean 			
 of the population. It seems then that we could use a single sample to make a reasonable statement, to the effect of "The 		• Under Section A of the board plan, write the statement "The mean schoolbag weight of students in the population is close to 5.5 kg".	 Do students understand that we can use our sample mean to approximate the population mean?

•	population mean is close to the value of our sample mean". I want each group to use their sample mean to make this type of statement about the population mean.	 Stude mean abou which popu arous 	ents use their sample n to make a statement It the population mean h is of the form "The Ilation mean is nd".	No we	the: Each group should replace the 5.5 kg with the mean eight obtained from their sample. Under Section A of the board plan write the following "It seems reasonable to say $\mu \simeq \bar{x}$ ".		• Do students understand that we can make this type of statement because the sample means tend to be close to the population mean?
•	Are all the statements freasonable? Are all the statements consistent with each other? Are all the statements consistent with the true mean of the population? So it is possible to use the mean of a single sample to approximate the mean of a population.	 Yes. Well than Yes b mear group Yes b samp other Most consiresul the o popu Yes b at 8 s samp arour 	they're more reasonable our original statements. because the population is in and around each p's sample mean. because each group's ole mean is close to every r group's sample mean. t of the statements are istent but one group's t is not close to any of other groups' or to the ilation mean. but we have only looked samples. Will every ole mean be in and nd the population mean?				Do students understand that (most of) the statements about the population mean are fair and consistent with each other?
S	ECTION B – Understa	nding	the distribution of sa	m	ple means		
•	We have seen that sampling variability means that we cannot			•	Refer to Section A of the board plan as you summarise what has been learned.	•	Do students understand that, because of sampling variability, we can only use the mean of a single

 equate the mean of a single sample with the mean of a population, however it appears that we can approximate a population mean using the mean of a single sample. A couple of problems exist with the way in which we achieved 		sample to approximate the mean of a population?
 this. Firstly we do not know if this approximation is valid since we based our understanding on a very small number of 	• Under Section B of the board plan write the following: Problem 1: Our conclusion to Section A was based on a small number of sample means ⇒ we should check this conclusion using more sample means.	 Do students understand that this result was based on a very small number of sample means?
 It would be prudent then to look at a larger group of sample means and see if they exhibit similar behaviour. Secondly, when we say "The population mean is <i>approximately</i> equal to the sample mean" or "The population mean is <i>close to</i> the sample mean" what exactly 	 Under Section B of the board plan write the following: Problem 2: The language we used in our conclusion to Section A is too subjective ⇒ we need a mathematical way of describing the variation between the mean of the population and the mean of a single sample. 	 Do students recognise that it would be wise to look at a larger group of sample means to see if this behaviour (the sample means lying close to the population mean) persists? Do students recognise the subjectivity of using language such as "approximately" or "around" and the problem that this presents for mathematics?

	da a sea d			
	do we mean by			
	approximately or close			
	to?			
•	One person's			
1	interpretation of this			
	language will be			
1	different to another's.			
•	This is a feature of			
1	mathematics i.e.			
	there is no room for			
	ambiguity in the			
1	language that's used			
	to describe outcomes			
•	Stating it another way			
	we need some			
1	mathematical way to			
	precisely describe the			
1	variation between a			
1	population mean and			
1	the mean of a single			
	sample.			
•	To address this we're			
	going to go back to			
	our simulated			
1	population of			
	schoolbag weights and		• Distribute Section B: Student Activity 1 to all students.	
	investigate it in more		 Move around the room to make sure students 	
1	detail.	• Students answer Section B:	understand the task.	
•	Let's start our	Student Activity 1	• Encourage students do discuss the questions with each	
1	investigation by		other.	
	looking at our		• Open the <i>GeoGebra</i> file	
	simulated population.		"TheDistributionOfSampleMeans.ggb". The dark-blue	

 It's roughly normal. It's skewed to the right – slightly. It's roughly symmetric. 	histogram shows the population distribution. Click on the button "Normal population".	 Can students describe the shape of the distribution? Do students recognise the population distribution as normal?
 Using mean, median or mode. 		 Can students recall the different ways to locate the centre of a dataset?
 It's centred around 5. Its mode is 5. Its mean is 5.1. That was the value written in the envelope. 		
 Using standard deviation, interquartile range or range. 	 Demonstrate the range of the population on the population distribution on the board. 	 Can students recall the different ways to measure the spread of a dataset?
 Its values range from just above 0 to just below 10. I need to know the values in the dataset to calculate the standard deviation 		
• The interquartile range is ≈ 3 .	 In the GeoGebra file "TheDistributionOfSampleMeans.ggb" click on the button "Show Parameters" to reveal the population mean and the population standard deviation. 	• Do students recall that σ represents the standard deviation of a population?
	 It's roughly normal. It's skewed to the right – slightly. It's roughly symmetric. Using mean, median or mode. It's centred around 5. Its mode is 5. Its mean is 5.1. That was the value written in the envelope. Using standard deviation, interquartile range or range. Its values range from just above 0 to just below 10. I need to know the values in the dataset to calculate the standard deviation. The interquartile range is ≈ 3. 	 histogram shows the population distribution. Click on the button "Normal population". It's roughly normal. It's skewed to the right – slightly. It's roughly symmetric. Using mean, median or mode. It's centred around 5. Its mode is 5. Its mean is 5.1. That was the value written in the envelope. Demonstrate the range of the population on the population distribution on the board. Using standard deviation, interquartile range or range. Its values range from just above 0 to just below 10. I need to know the values in the dataset to calculate the standard deviation. The interquartile range is ≈ 3. In the <i>GeoGebra</i> file "TheDistributionOfSampleMeans.ggb" click on the button "Show Parameters" to reveal the population mean and the population standard deviation.

•	the distribution. It is 2.57. There is shorthand notation to represent the standard deviation of a population and that is the Greek letter σ . What name could you give to this distribution?	 The distribution of all schoolbag weights. The population distribution. 	•	Write the term "Population Distribution" in the word- bank.	• Do students recognise that this is the population distribution?
•	In Section A we concluded that, while the means of individual samples are not equal to the population mean, they do approximate the population mean. Let's use the sample means calculated by each group to construct a histogram of the		•	 Highlight the results from each group on the board. In the <i>GeoGebra</i> file "DistributionOfSampleMeans.ggb", type each group's mean and standard deviation into the input boxes, clicking "Submit your Sample" each time. Explain that this is similar to the number-line plot we used in Section A, only this time we are visualising them using a histogram. 	
•	sample means. This will provide a visual of the distribution of sample means. Does the distribution of the each group's sample means back up what we already know	 Yes – we know that different samples give different means and the distribution demonstrates this. Yes – all the answers are different. Yes – the distribution demonstrates sampling variability. 	•	Point out that the sample means calculated by the class are close to the population mean.	 Do students recognise that the distribution of sample means demonstrates sampling variability? Do students recognise that the sample means are close to the population mean?

about sampling? Explain.	 Yes – all the answers are close to each other. Yes, while the answers all vary, they're all close to the answer we're looking for - the population mean of 5.1. 		
 To create this distribution we use each group's sampl mean. We called the first distribution the population distribution. What should we call the second distribution 	 The mean distribution. The sample distribution. The distribution of the sample means. The sample-means distribution. 		 Do students understand that the second distribution is made up of sample means? Do students understand why the second distribution is known as the distribution of sample means?
 It is known as the distribution of the sample means because it is made of the means of different samples. 	ιp	• Write the different names given to the distribution of sample means in the word-bank. Encourage students to write each term in their journal with an appropriate description.	
 It is often called the sampling distribution of the mean or the 	Flat.It's hard to tell.	• Use a marker to "throw a rope" over the distribution of sample means which is projected onto the board.	 Do students recognise that it is difficult to discern a shape to the

•	sampling distribution for short. What shape is the distribution of the sample means?	 There aren't enough points in it to tell its shape. We need more points to tell. It doesn't have a shape. 	distribution given the small number of data items?
•	It is difficult to discern the shape of the distribution since we only have the few values we calculated in class to visualise it. We have also stated that all the sample means are close to the population mean. This is a dangerous assumption since we have only looked at a small number of sample means.		 Do students understand that we are only looking at a tiny fraction of all the possible means from samples of size 36? Do students recognise that taking more samples will give me a better understanding of the distribution of sample means? Do students understand that our assumption that sample means are close to the population mean is based on a very small number of sample means and so is unreliable?
•	The only reason we have so few sample means in our distribution is due to limited amount of time available. We only had time to take a few samples and calculate their means. Using ICT can get around this problem.		 Do students understand that GeoGebra is being used to create more samples?

 I am going to use GeoGebra to take more samples of size 36, calculate each sample's mean and include each mean in 			 Do students understand that GeoGebra is creating new samples of size 36, calculating the mean of each sample and adding each mean to our histogram?
our histogram. I will continue to do this until our histogram is made up of 100 values so that we might obtain a more complete picture of			
 the distribution of sample means. Before I do, I would like you to answer Question 2 and Question 3 of Section B: Student Activity 1. 	 Students work on answering Question 2 and Question 3 of Section B: Student Activity 1. 	 Move around the room and encourage students to explain the reasoning behind their answers. Use suitable questioning to aid student understanding. Encourage students to answer Question 2 and Question 3 by ticking the appropriate option and by marking in their answer on the probability line. 	
 How likely it is that I will get a sample mean with a value less than 3? Put another way, how many of the 100 sample means would you expect to have a value less than 3? Explain your 	 Unlikely. Fairly unlikely. No chance. There's a good few of the population with a value less than 3 so there's a reasonable chance. Approximately 45 of the population have weights less than 3 kg, so the probability of getting a mean less than 3 is 		 Can students correctly predict the likelihood of getting a sample mean less than 3? Can students explain their reasoning?

	 I'd expect approximately 200 	
	of my complex to have values	
	or my samples to have values	
	less than 3.	
	Lots of the samples should	
	have means less than 3.	
	 When we sampled no one got 	
	a sample mean less than 3, so	
	it's unlikely.	
	• There is a very small chance,	
	as to produce a sample mean	
	of less than 3 you would need	
	most of your sample to have	
	values less than 3. If the	
	sample is randomly chosen	
	from the given population this	
	is extremely unlikely.	
	• There's a really good chance	
	of this hannening	 Can students correctly predict the
• How likely is it that I	 There's a high probability 	likelihood of getting a sample
will get a sample mean	 Many of the nonulation 	mean between 4 and 6?
with a value of	• Many of the population	Can students explain their
between 4 and 6? Put	weights he in this range so	reasoning?
another way, how	setting a second with a mean	i casoning.
many of the 100	between 4.8.C	
sample means would	between 4 & b.	
you expect to have a	• Approximately $\frac{1}{3}$ of the	
value between 4 and	population lies in this range so	
6?	I'd expect 33 of my 100	
	samples to have means in this	
	range.	
	 It is very likely as all of the 	
	groups in class got sample	
	means between 4 & 6.	

		 It is very likely as in a large enough sample even extreme weights should combine to produce a mean close to 5. I'd expect some of the sample means to be within this range. 		
•	Let's see if your predictions are correct. Based on our simulation, what is the probability of getting a sample mean less than 3?	 Zero. There's no chance. It's extremely unlikely. It's possible but very unlikely. In 100 samples, none had a mean less than 3. 	 On the <i>GeoGebra</i> File "DistributionOfSampleMeans.ggb", click on the "Generate 1 Sample" button. Continue to click on the "Generate 1 Sample" button until the distribution of sample means has 100 values. Encourage students to compare their predictions from Question 2 and Question 3 with what the simulation demonstrates as you continue to click on the "Generate 1 Sample" button. Encourage students to use the histogram of the sample means to estimate the probability of getting a sample mean less than 3 and to estimate the probability of getting a sample mean between 4 and 6. On the distribution of sample means in the region below 	 Do students recognise that the probability of getting a sample mean with a value less than 3 is virtually zero?
•	Is this more or is it less than you predicted?	 It's much less than I predicted. I thought there'd be a 20% chance but it's much smaller than that. It's as I predicted. 	3.	 Are students' predictions in agreement with the simulation?
•	Based on our simulation, what is the chance of getting a sample mean with a	 It's almost certain. It's very likely. Over 90%. Over 95%. 		 Do students recognise that the probability of getting a sample mean with a value between 4 and 6 is very high?

value between 4 and 6?	 Almost all the sample means are between 4 and 6. 		 Are students' predictions in
 Is this more or is it less than you predicted? 	 It's much more. I thought there was a 36% chance of a sample mean between 4 and 6 but the probability is much higher than this. It's as I predicted. 	No sample means below 3 0 1 2 3 4 5 6 7 8 9 10 Most sample means between	agreement with the simulation?
 Given that ≈ 20% of the population weights are less than 3, why is it so unlikely to get a sample-mean less than 3? 	 I don't know. To produce a sample mean of less than 3, you would need most of your sample values to be less than 3. The chance of this happening is very small when you take a simple random sample from the population. 	 On the <i>distribution of sample means</i> on the board, highlight the presence of almost all sample means in the region between 4 & 6. 	 Do students understand that to generate a mean of less than 3, you would need the vast majority of the values in your sample to have a value less than 3? Do students understand that it is highly unlikely that most of the values in a sample of 36 which is drawn from this population will have a value less than 3?
	 It's very unlikely to get 36 values in your sample which will result in a mean of less than 3. 	 On the <i>GeoGebra</i> File "DistributionOfSampleMeans.ggb", click the "Reset" button. On the <i>GeoGebra</i> File "DistributionOfSampleMeans.ggb", click the "Generate 1 Sample" button. Encourage students to look at the population values which make up the sample (these are shown in the 	

 Given that ≈ 36% of the population weights are between 4 and 6, why is the probability of getting a sample-mean with a value between 4 and 6 so high?

• There are loads of ways to produce a sample mean with a value between 4 and 6.

- It's not just the values between 4 and 6 which can produce a mean between 4 and 6. For example a weight of 2 and a weight of 8 produce a mean weight of 5.
- It is likely that our sample will contain values below 4 and above 6 but when these values combine they produce a mean between 4 and 6.
- Even if our sample contains a value below 4 it is likely, due to our sample being random, that there will be a value in our sample greater than 6. These two "extreme" values combine to produce a mean value between 4 and 6.
- Even if our sample contains values outside this range it is likely that some will be above the range and some below.
 Overall these pairs of values are likely to combine to produce a mean value inside this range.

- On the GeoGebra File
 "DistributionOfSampleMeans.ggb", click the "Reset" button.
- On the *GeoGebra* File "DistributionOfSampleMeans.ggb", click the "Generate 1 Sample" button.
- Encourage students to look at the population values which combine to produce a sample mean between 4 and 6 (these are shown in the dark blue histogram superimposed on the population histogram).
- Highlight the presence of extreme values in the sample and how there are similar numbers of extreme values on either side of the mean.
- Encourage students to then think about the 36 weights which would be needed to produce a mean of between 4 and 6.

- Do students understand that to produce a mean weight between 4 and 6, you don't need all 36 weights to be between 4 and 6?
- Do students understand that this property of means results in a really high probability of getting a sample mean between 4 and 6?
- Can students verbalise why the probability of a sample mean between 4 and 6 is so high?

			•	Encourage students to write out a list of weights (maybe not as many as 36) which would give a mean weight between 4 and 6. If required, write a list of weights on the board which have a mean between 4 and 6.		
•	 100 sample means is still a small number. Let's increase this to 1000 sample means. Does our enlarged distribution reinforce what we've just discovered about the number of sample 	• Yes.	•	On the <i>GeoGebra</i> File "DistributionOfSampleMeans.ggb ", click the "Generate 100 samples" button nine times to produce a distribution consisting of 1000 sample means.	•	Do students recognise that the enlarged distribution also demonstrates how unlikely it is to get a sample mean with a value less than 3?
•	 means below 3 and between 4 and 6? While our distribution of 1000 sample means is just a small fraction of all the possible samples from this population, it reveals some really important facts. To help us identify this information I would like you to answer 	 Students work on answering Question 4 and Question 5 of Section B: Student Activity 1. 	•	Move around the room to ensure students are on task. Use suitable questioning to help students complete the task.	•	Do students recognise that the enlarged distribution also demonstrates how likely it is to get a sample mean with a value between 4 and 6?
	like you to answer Question 4, Question 5 and Question 6 of					

	Section B: Student		• Use a marker to "throw a rope" over the distribution of	
	Activity 1.	 It's normal. 	sample means.	
		 It's symmetric. 	• Under Section B of the board plan add the following:	
•	What shape is the	 It's Gaussian. 	"The distribution of sample means is normal".	 Do students recognise that the
	distribution of sample	 It has a single mode. 		distribution of sample means is
	means?	 Bell-shaped. 		normal?
•	Where is the centre of the distribution of sample means?	 Around 5. Its mean is approximately 5. Just above 5. The same as the population mean. It has a mode around 5. It's centred on a value just above 5. 	 Point to the centre of the distribution of the sample means on the <i>GeoGebra</i> file "DistributionOfSampleMeans.ggb". 	 Can students estimate the centre of the distribution of the sample means?
•	Instead of estimating, could we actually calculate the centre of the distribution of the sample means?	 Yes. We could find the mode of the sample means. We could find the median of the means. We could calculate the mean of all the sample means. We could add up all the sample means and divide by the number of sample means. We could find the average of the sample means. The mean of the means. 	 Write the term "mean of the sample means" in the word-bank on the board. 	 Can students describe how to find the centre of the distribution of sample means?
		 The mean of the sample 		
		means.		

•	We will choose the	•	The mean of all the sample	•	Add the symbol $\mu_{ar{x}}$ to the appropriate place in the		
	mean as our measure		means.		word-bank.	•	Can students come up with the
	of the distribution's						term "mean of the sample means"
	centre. Given that we						themselves?
	already have a					•	Do students understand that the
	population mean (μ)						mean of the sample means is the
	and a sample mean						centre of the distribution of
	$(ar{x})$, what should I call						sample means?
	this mean?						
•	We call the centre of					•	Do students understand that $\mu_{ar{\chi}}$
	the distribution of the						means the mean of the sample
	sample means the						means and the centre of the
	mean of the sample						distribution of the sample means?
	means. It is denoted	•	Yes – μ means mean and $ar{x}$			•	\circ Can students explain why $\mu_{ar{x}}$ is
	by the symbol $\mu_{ar{x}}.$		means the mean of a sample				used to denote the mean of the
			so $\mu_{ar{x}}$ means the mean of the				sample means?
•	Can you explain why		sample means.				
	$\mu_{ar{x}}$ is used to represent	t					
	the mean of the			•	On the <i>GeoGebra</i> file		
	sample means?				"DistributionOfSampleMeans.ggb" click on the button		
					"Show Statistics" to reveal the mean of the distribution		
•	Using GeoGebra, I can				of the sample means.		
	calculate that $\mu_{ar{x}}\cong$						
	5.12. This tells me that	E					
	the centre of the						
	distribution of sample			•	On the <i>GeoGebra</i> file		
	means is 5.12.	•	Yes.		"DistributionOfSampleMeans.ggb" click on the button		
		•	Yes. They're approximately		"Align Means" to visualise the fact that $\mu_{ar{\chi}}=\mu$.		
•	Is there a relationship		equal.				
	between the centre of	•	They're the same.			•	Do students recognise that the
	the population						mean of the sample means is equal
	distribution (μ) and						to the population mean?

	the centre of the distribution of the sample means $(\mu_{\bar{x}})$? Explain	 The mean of the sample means equals the mean of the population. μ_{x̄} = μ. 		
•	Does this tell me anything useful in relation to the sampling process? Explain. So it seems that when	 Not really. Yes. Yes – it tells me that the means I get when I sample tend to be close to the population mean. Yes it tells me that while different samples give me different sample means, the values tend to be centred on the population mean. Yes it confirms what we suspected from our own sample means: that the sample means are roughly the same as the population mean. Yes it tells me that most of the time the mean I get from a sample will be in or around the population mean. We're trying to use a single sample mean to make a statement about a population mean and this result suggests we might be able to. 	• Under Section B of the board plan write the following: "The mean of the sample means equals the mean of the population $\mu_{\bar{x}} = \mu$ (while different samples produce different means, these means tend to be close to the population mean)"	 Can students explain what μ_{x̄} = μ means in terms of sampling variability? Do students understand that μ_{x̄} =
	we sample, even			μ says that, while sampling

though different	•	Encourage students to add this to the notes in their		variability produces different
samples give different		own copybooks.		means from different samples,
means, all of these	•	Using the <i>GeoGebra</i> file		these sample means hang around
means are centred on		"DistributionOfSampleMeans.ggb" highlight the fact		the population mean?
the mean of the		that, while there are lots of different sample means,	•	Do students understand the
population.		they all seem to hang around the population mean.		importance of this result in terms
 Another way of saying 				of our original question of using a
this is that the mean				single sample to make a statement
of the sample means is				about a population?
equal to the				
population mean.				
 While we have only 				
demonstrated that				
$\mu_{\bar{x}} \cong \mu$, using 1000				
samples, there is a				
theorem in				
mathematics which				
says that $\mu_{\overline{\alpha}} \equiv \mu$.				
provided certain				
conditions are				
satisfied (The central-				
limit theorem)				
inite theorem,				
 This is confirmation 				
that while sample				
means do not				
nocossarily agual the				
nonulation mean they				
are close to it				
• With this confirmed				
 with this confirmed, let's turp our attaction 				
let s turn our attention				
to understanding how				
 much a sample mean is likely to vary from the population mean. Is there a way in which we could measure how much the different sample means vary from the population mean? 	 h Yes we could measure the spread of the sample means. We could use the range of the sample means. We could calculate the 		 Can students describe how to measure the amount of variation in a distribution? 	
---	--	---	---	
 What is the spread or the distribution of sample means? 	 standard deviation of all the sample means we got. We could use standard deviation as the sample means are distributed normally. Its range is from ≈ 3.6 to ≈ 6.4. Its spread is small compared to the population. It has a small standard deviation. It's much less than the standard deviation of the population. 	• Use the GeoGebra file "DistributionOfSampleMeans.ggb" to highlight the range of the data.	• Can students estimate the range of the sample means?	

•	We will use standard deviation as our measure of spread since we are dealing with a symmetric distribution and standard deviation is a good measure of spread in such cases. If I wanted to calculate the standard deviation of the distribution of sample means using my calculator, what values would I need to	 The sample means. The means of all the samples we took. All the sample means 	 Write the term "standard deviation of the sample means" in the word-bank on the board. 	 Can students recognise that they don't have enough information to calculate the standard deviation of the distribution of the sample means? Can students describe the
•	I can do this calculation using <i>GeoGebra</i> and when I do I get a standard deviation of 0.43. Given that we already have the standard deviation for our	 The standard deviation. The standard deviation of means. The standard deviation of the sample means. 		 the distribution of the sample means? Can students come up with the term "standard deviation of the sample means" by themselves?
	population (σ) and the standard deviation for a single sample (<i>s</i>),		 Highlight the different notations already on the board. Add the notation σ_{x̄} at the appropriate location in the word-bank. 	

what should we call this standard deviation?			
 Could you suggest suitable notation to represent the standard deviation of the sample means? Explain your choice. Previously we saw that there is a relationship between the population mean and the mean of the sample means. Is there an equivalent relationship between 	 σ_{x̄}. σ_{x̄} - because σ means standard deviation and x̄ means the mean of a sample. σ_{x̄} - the standard deviation of the sample means. No. They're definitely not equal. There doesn't seem to be. The standard deviation of the sample means is a lot less than the standard deviation of 	 On the <i>GeoGebra</i> file "DistributionOfSampleMeans.ggb", highlight the value of the population standard deviation and the standard deviation of the sample means. Population Sample means Sample means <	 Can students come up with the correct notation to denote the standard deviation of the distribution of the sample means? Do students understand that σ_{x̄} is the standard deviation of the sample means? Do students recognise that σ ≠ σ_{x̄}? Do students recognise that σ > σ_{x̄}?
$\sigma_{\overline{x}}$ and σ ? Explain. • Why is $\sigma_{\overline{x}}$ less than σ ?	 The distribution of sample means is much narrower than the population distribution. Because when we take a large enough sample from the population, the chance of 	 value of <i>σ</i> and the width of the population distribution. Use the GeoGebra file "DistributionOfSampleMeans.ggb" to remind students why the sample means are clustered so closely together. To do so click the "Generate 1 sample" button and highlight how extreme values from the population still produce a sample mean close in value to the population mean. 	 Can students explain why σ_{x̄} is less than σ? Do students understand why the majority of x̄ values are close to one another? Do students understand that when a state of the students understand the state of the students understand the state of the students understand the state of the state of

	 away from the population mean is small. Because when we take a simple random sample from the population the extreme values (on either side of the mean) in our sample tend to combine to produce a mean close to the centre of the distribution. Because of this our sample means tend not to vary too much. There is much less variation in the sample means compared to the values in the population. The sample means vary much less because each value is an 		large-enough sample, extreme values tend to combine to generate an \bar{x} value close to $\mu_{\bar{x}}$?
the size of σ – can we quantify this? Let's look at the ratio of σ : $\sigma_{\bar{x}}$. • To the nearest integer, what is the ratio of σ : $\sigma_{\bar{x}}$?	values.	 Encourage every student to calculate the ratio σ: σ_{x̄}. Encourage students to verbalise the relationship between σ and σ_{x̄}. 	• Can students calculate the ratio σ : $\sigma_{\bar{x}}$ to the nearest integer?
 Can you express this relationship in words? 	 6. σ_{x̄} is six times smaller than σ. σ_{x̄} is one sixth the size of σ. 		• Can students describe what this result means for the relationship between σ and $\sigma_{\bar{x}}$?

		• σ is six times bigger than $\sigma_{\bar{x}}$.	
•	I asked you to	• If I knew σ then to find $\sigma_{\bar{x}}$ all	
	calculate the ratio of	I'd need to do is divide by 6.	
	to the nearest integer		
	because our value is		 Do students appreciate that, while
	only an estimate of		$\sigma: \sigma_{\bar{x}} \cong 6$ this is only an
	the true ratio since we		approximation based on 1000
	only used 1000		sample means, in reality σ : $\sigma_{ar{x}}$ is
	samples. If we were to		equal to 6 for this case.
	use all the possible		 Do students understand that our
	samples of size 36		approximation is due to the fact
	from the population of		that we're only examining a small
	200 we would find		portion of the samples in the
	that the ratio of σ : $\sigma_{ar{x}}$		distribution of the sample means?
	is exactly 6 – without		
	rounding. (As		
	predicted by the		
	central-limit theorem).		
•	The ratio of σ : $\sigma_{\bar{x}}$ is 6		
	but will it always be 6		
	or does the ratio		
	change. In other		
	words is there a way	 I don't know. 	
	to predict the	• I'm not sure.	
	relationship between		
	σ and $\sigma_{ar{x}}$ without		
	having to calculate		
	σ : $\sigma_{\bar{x}}$?		
•	A little more		
	GeoGebra might help		
	us to fully understand		
	how $\sigma_{\! ar x}$ and σ are		

• Can you describe what		Encourage students to discuss their answers to	• Do students understand why the
is happening to the		Question 2 – Question 7 of Section B: Student Activity	value of σ is constant?
value of σ as the size		2.	
of our 1000 samples	 It's the same. 	 Circulate to ensure students are on task. 	
increases?	 It's not changing. 	Use suitable questioning to help students progress	
	 It's constant. 	their thinking.	
Why is this so?			
		• In the <i>GeoGebra</i> file	
		"DistributionOfSampleMeans.ggb", click off each of	
	 Because we're dealing with 	the check boxes. Click on the n=16 checkbox and then	
	the same population all the	the n=81 checkbox and highlight the difference in the	
	time.	spread of each distribution.	
	 We're only changing the 		
	sampling but the population is		
	the same.		
 Can you describe what 	• The population is the same.		
is happening to $\sigma_{ar{x}}$ as			
the size of our 1000			 Do students recognise that the
samples increases?			value of $\sigma_{ar{\chi}}$ is decreasing as we
	 It's decreasing. 		move down the table?
 Can you describe the 	 It's getting smaller. 		
relationship between			
$\sigma_{ar{x}}$ and sample size?			
			 Can students describe the
			relationship between $\sigma_{ar{x}}$ and
	• As one gets bigger the other		sample size?
	gets smaller.		 Do students recognise that
 Do the graphs of the 	• As sample size increases, $\sigma_{\bar{x}}$		increasing sample size reduces $\sigma_{\bar{x}}$?
distributions back up	decreases.		
this relationship?			
Explain.		 Encourage students to think about the effect of an 	• Can students relate changes in $\sigma_{\bar{x}}$
		outlier on a small sample compared to its effect on a	to physical changes in the
	• Yes.	large sample.	distribution of the sample means?

	Why does σ_{-} get	•	Yes. As sample size increases the width of the distribution decreases.				
•	smaller as sample size gets bigger? If I were to take 1000 samples of size of 100, what would you	• •	 I'm not sure. As sample size gets bigger there should be less variation in the mean of the sample. The more values you have in a sample the less influence a few extreme values will have on the mean. This means you'd expect all the means to be closer together. As a result standard deviation should be smaller. In a larger sample, individual extreme values will have less influence on the mean. 	•	In the <i>GeoGebra</i> file "DistributionOfSampleMeans.ggb ", click off the n=16 checkbox to leave the n=81 checkbox clicked. Ask students to predict what will happen when the n=100 checkbox is clicked.	•	Can students explain why an increase in sample size results in a decrease in $\sigma_{\bar{x}}$? Do students understand that in larger samples a small number of extreme values contribute less to the calculation of the mean than they would in a small sample? Do students understand that the larger a sample is the less influence a single outlier will have on its mean?
	of the sample means to look like? Explain your reasoning.	•	I would expect it to be narrower than the distributions of smaller sample-size. I would expect the distribution of sample means to be less spread out.	•	In the <i>GeoGebra</i> file "DistributionOfSampleMeans.ggb ", click on the n=100 checkbox. Encourage students to reflect on whether the distribution is as they predicted. Show the working out of the ratio of σ : $\sigma_{\bar{x}}$ on the board.	•	 Can students predict what the distribution of the sample means will look like for a sample size of 100? Do students recognise that a large sample size will mean a distribution of sample means which has a smaller spread?

		-		-
		 I would expect the sample 		
•	 For a sample size of 	means to be closer to the		
	100 what will the ratio	centre of the distribution.		
	of σ : $\sigma_{\bar{x}}$ be?	• I'd expect a smaller standard		
		deviation as outliers will have		
	 Let's see if your 	less influence on the mean.	• Encourage students to use their table as a guide for	
	prediction is correct.		writing down the relationship.	 Can students predict the correct
	Use the values of σ	 I don't know. 	• If students struggle with writing down the relationship	ratio of : $\sigma_{\bar{x}}$?
	and $\sigma_{ar{r}}$ to calculate the	• 10	it may be useful to rephrase the question in the	
	value of σ : $\sigma_{\bar{x}}$.	• $\sqrt{100}$	following way: "If you knew the value of σ and the	
		· • • • • • • • • • • • • • • • • • • •	sample size (n) , how would you calculate the value of	
	• Can you now describe		$\sigma_{\bar{x}}$?	
	, the general		• Encourage students to verbalise the relationship and to	
	relationship between		write it using mathematical notation.	
	σ , $\sigma_{\bar{r}}$ and n ? Fill your		• Write the following under Section B of the board plan:	
	answer into Question		"The standard deviation of the sample means is less than	
	8 of Section B:		the standard deviation of the population and depends on	 Can students write down the
	Student Activity 2.	• $\sigma = \sqrt{n} \times \sigma_{-}$	sample size $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{\pi}} \Rightarrow$ the bigger the sample we use, the	general relationship between σ , $\sigma_{\bar{x}}$
		$\sigma : \sigma_{-} = \sqrt{n}$	\sqrt{n} closer its mean is likely to be to the population mean. "	and <i>n</i> ?
		$\frac{\sigma}{\sigma} = \sqrt{n}$	Relate this relationship back to the physical properties	
		$\sigma_{\overline{\chi}} = \sqrt{n}$	of the distribution of sample means.	
		• $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$		
		• The standard deviation of the	• Encourage students to discuss what this relationship	
		population is \sqrt{n} times the	means in terms of our ability to use the mean of a	
		standard deviation of all the	single sample to make a statement about the	
		sample means.	population mean.	
		• The ratio of σ : $\sigma_{\bar{x}}$ is \sqrt{n} .		
		• The standard deviation of the	• Use the distributions for n=16, n=25,in the <i>GeoGebra</i>	
		sample means is \sqrt{n} times	file "DistributionOfSampleMeans.ggb" to relate the	
		smaller than the standard	relationship $\sigma_{\bar{x}} = \frac{\sigma}{r}$ back to the ability to use a single	
		deviation of the population.	sample to make a statement about the population	
•	 Can you explain the 		highlighting the fact that a larger sample size means a	
	significance of this			

relationship in terms of using a single sample to make a		greater chance of getting a sample mean closer to the population mean.	
statement about a			
population?	• No.		• Do students understand that by
	Using a large sample is a good idea.		using a larger sample our sample mean is more likely to be close to
	• If we use a large sample, the		the population mean?
	mean we get is likely to be		Do students understand now this relationship is important when
	 While the answers from 		using a single sample to make a
	different samples give		statement about the population?
	different sample means, when		
	you use a larger sample it is		
	more likely your sample mean		
	will be close to the population		
	mean.		
	 when sample size is larger, there is less variation 		
	between the means from		
	different samples.		
	Means calculated from		
	different samples will be		
	different but with larger		
	samples this difference will be		
	smaller.		
	Your sample mean will not		
	but it is more likely to be close		
	to it if you use a larger		
	sample.		
 At the start of this 		• Use Section B of the board plan to highlight the facts	Do students recognise the main
section we set out to		we've discovered so far:	facts that we have discovered

centred on the mean of the population from which they are drawn. • We understand much more about how sample means vary from one sample to the next in that they do so normally around the population mean. • We've also seen that the spread of the sample means is much less than the spread of the population and depends on the spread of the	address two problems which arose during Section A . Over the course of this section we have confirmed that the means of individual samples differ but that these means are centred on the mean of the population from which they are drawn. We understand much more about how sample means vary from one sample to the next in that they do so normally around the population mean. We've also seen that the spread of the sample means is much less than the spread of the population and depends on the spread of the population and the size of our sample.	o about the distribution of sample means is normal. • $\mu_{\bar{x}} = \mu$. The sample means are centred on the population mean. • $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{\pi}}$. The sample means vary about the population mean. The level of variation depends on the variation in the population and the size of the sample.
When measuring sampling variability we	When measuring sampling variability we	Do students understand that we have used standard deviation to

have, up to now, used

	standard deviation as our preferred measure.						measure the level of sampling variability?
•	There is another way to describe the variation in a set of normally-distributed data which is equally important to understand and can					•	Do students understand that we are now going to use another measure to quantify the level of sampling variability?
•	sometimes prove more useful. To understand this approach, I would like you to answer Question 1 – Question 3 of Section C: Student Activity 1.	•	Students work to answer Question 1 – Question 3 of Section C: Student Activity 1 .	•	Distribute copies of Section C: Student Activity 1 to all students. Circulate around the room to make sure students understand what they are meant to do.		
•	What shape will the distribution of sample means be?	• • •	l don't know. Normal. Bell-shaped. Gaussian.	•	Use the GeoGebra file " TheDistributionOfSampleMeans.ggb " to model the sampling in this question. Click "RESET" to clear all previous work. Change the "Default Sample Size" to 100. Generate 1000 samples by clicking on the button	•	Do students understand that the distribution of sample means of size 1000 is normal?
•	How do you know this?	•	We've already seen that it is normal. Well any of the distributions	•	"Generate 100 samples" ten times. Rescale the y-axis so that the entire distribution fits on screen. Highlight the normal shape of the distribution of sample means.		
		•	of sample means that we've seen have been normal in shape. I didn't have to. It's the same as the population mean.	•	Refer to Section B of the board plan to remind students that $\mu_{\bar{x}} = \mu$.		

		r		1
	 How did you calculate the mean of the distribution of sample means? How did you calculate the standard deviation of the sample means? To complete the statements in parts (i) – (iii) of Section C: Student Activity 1, what prior knowledge of statistics did you use? 	 I just took the value of the population mean as they're equal. We know it's the same as the population mean. μ_{x̄} = μ. I used my formula. I divided the population standard deviation by the square root of the sample size. σ_{x̄} = σ/√n. I just estimated by looking at my distribution. The Empirical Rule. I used z-scores. 	 Refer to Section B of the board plan to remind students that σ_{x̄} = σ/√n. Write up the calculation of the standard deviation of the sample means on the board. Add a poster summarising The Empirical Rule to Section C of the board plan. Implies the standard plan. 	 Can students use μ_{x̄} = μ to calculate the mean of the sample means? Can students use σ_{x̄} = σ/√n to calculate the standard deviation of the sample means? Do students recall The Empirical Rule and the use of z-scores to make statements about a normal distribution?
			• Write the z-score formula: $z = \frac{ \bar{x}-\mu }{\sigma}$ under Section C of the board plan.	
,	 68% of the sample means should lie 	• 2.55 – 7.69 (incorrect). • 4.863 – 5.377. • $\mu \pm \frac{\sigma}{\sqrt{n}}$.	 Encourage students to use the histogram of the distribution of samples means from the GeoGebra file 	 Can students apply The Empirical Rule and/or z-scores to calculate the interval which contains 68% of the sample means?

	between what two		"TheDistributionOfSampleMeans.ggb" to decide which	
	values?		answer is correct.	• Can students use the image of the
		 4.863 – 5.377 is correct. 		distribution of sample means to
•	We have	 If we look at our sketch of the 		identify which interval is correct?
	disagreement about	distribution of sample means		
	the result. Which	we can see that almost 100%		
	value is correct? How	of the sample means lie •	If no student can describe how the incorrect answer	
	might we check?	between 2.55 – 7.69 so this	was obtained, it may be useful to call on a student who	
		cannot be the correct answer.	got the incorrect answer to describe their calculation.	
				 Can students identify the
		 By using the wrong standard 		misconception which leads to an
		deviation.		incorrect interval of 2.55 – 7.69?
•	So the answer of 4 863	 By using the standard 		
-	-5377 is correct Can	deviation of the population		
	you explain how	instead of the standard		
	somebody might get	deviation of the sample		
	an incorrect answer or	means.		
	2.55 – 7.69?	 By looking at the population 		
		instead of the distribution of		
		sample means.		
		We're asked about the	Highlight the distribution of sample means on the	
		percentage of sample means	board so that students understand that we are	
		and not the percentage of the	answering questions about it and not the population	
		population. So we need to use	distribution.	
		$\sigma_{\bar{x}}$ in our calculation and not	Explain that although the formula for calculating a z-	• Do students understand that
		σ.	score is $z = \frac{ x-\mu }{\sigma}$, the standard deviation here is the	when asked to make statements
			standard deviation of the distribution of sample means	about sample means they must
•	So we need to be		i.e. $\sigma_{\bar{x}}$.	use the mean and standard
	careful when			deviation of the sample means
	answering questions			distribution?
	about sample means.			
	If we are using The			
	Empirical Rule or z-			

· · · · · ·	1		1			
	scores to answer					
	questions about					
	sample means we					
	must make sure that					
	we focus on the					
	distribution of sample					
	means and not the					
	population					
	distribution.		•	On the poster of The Empirical Rule add in the exact		
	Accordingly we must			values for the 95% interval and explain that ± 2 only		
	also be careful to use			gives an approximation to 95% of the data.		
	the standard deviation		•	Check that students understand that they are to use z-		
	of the sample means			scores for their calculations and not The Empirical Rule.		
	$(\sigma_{ar{x}})$ and not the				•	Do students understand that The
	standard deviation of					Empirical Rule is an approximation
	the population (σ).					of z-scores?
					•	Do students understand that the
•	Some of you used The	• The Empirical Rule is quicker.				bound on the 95% interval is
	Empirical Rule and	• z-scores.				± 1.96 and not 2?
	some of you used z-	• z-scores – The Empirical Rule				
	scores to get your	is just an approximation.	•	Check that students are using the standard deviation of		
	answers. Which is	• z-scores are more accurate.		the sample means and not the standard deviation of		
	better?	• They only differ when looking		the population in their calculations.		
		at 95%.	•	Check that students are using $\pm 1.96\sigma$ and not $\pm 2\sigma$ in		
				their calculation.		
•	For accuracy, from		•	Check that students are sketching the distribution of		
	here on we will use z-			sample means correctly.	•	Do students use $\frac{\sigma}{\sqrt{n}}$ as the
	scores unless					standard deviation in their
	otherwise asked.					calculation of the 95% interval?
					•	Do students use +1.96 $\frac{\sigma}{\sigma}$ as the
•	In light of our		•	Remind students that The Empirical Rule and z-scores		and of the OF $\frac{1}{\sqrt{n}}$ is the
	discussions, I would	 Students work on revising 		may only be used with data which is normally		ends of the 95% Interval?
	like you to go back and	their answers to Question 2		distributed.		

	check your answers	and Question 3 of Section C:			
	for Question 2 and	Student Activity 1.			
	Question 3 of Section				
	C: Student Activity 1.			•	Do students recognise that the
•	Each question in Section C: Student Activity 1 begins by asking what shape the distribution of sample means is. Why do you think this question was asked each time?	 So we'd know what shape to draw. Because it's really important. Everything else we're asked to do is based on the fact that the distribution of sample means is normal. You can only use z-scores and The Empirical Rule with a normal distribution. 	Write up the calculation of the 95% Confidence Interval on the board. $5.12 \pm 1.96 \frac{2.57}{\sqrt{50}}$ $= 5.12 \pm 0.712$ $= 4.408 - 5.832$		construction of our intervals is dependent on the fact that the distribution of sample means is normal?
•	In Question 2 (d) (ii) of Section C: Student Activity 1 you are asked to complete the statement "Before I choose a random sample of size 30	 The same as in part (i). 4.408 – 5.832. 			
•	What did you write down for this? Can you explain what this statement means? What does it mean to be 95% confident?	 I don't know. Before I choose a sample I know there will be a 95% chance that it will have a mean between these two values. 		•	Do students recognise that we can use the fact that 95% of the sample means are within a certain interval to make a probabilistic statement about a single sample mean?

 In Question 2 (d) (iii) of Section C: Student Activity 1 you are asked to write down the 95% confidence interval for the sample mean. What did you write down for this? 	 Since 95% of all the possible sample means fall between these two values, I can be 95% confident that a single sample will have a mean between the same two values. The same as in the other two parts of 2 (d). It's the same as the last part. 4.408 – 5.832. 	 Write the term "95% confidence interval for a sample mean" under Section C of the board plan. Write the following explanation of the 95% confidence interval under Section C of the board plan: "I can be 95% confident that the mean of a single sample will fall within this interval" Add in "I can be 95% confident that: μ − 1.96 σ/√n ≤ x̄ ≤ μ + 1.96 σ/π" 	 Are students comfortable using inequalities to represent an interval? Can students explain what a 95% confidence interval means?
 Given this, can you explain what the "95% confidence interval for a sample mean" means? It's important to highlight what we've just done in 	 It's the range where most of the sample means will lie. 95% of all the possible sample means will be inside this interval. Before I choose a random sample of size 50, I know there's a 95% chance it will have a value inside this interval. When samples are chosen from a population they can all have different means but 95% of them will have means within this interval. 	 Under Section C of the board plan write the following statement: "A confidence interval provides a mathematical way to predict a single sample mean using the mean of a population." 	 Do students understand that we now have a mathematical way to

constructing a 95%			relate the mean of a single sample
confidence interval.			to the mean of a population?
Prior to this when we			
spoke about the			
relationship between			
a sample mean and			
the population mean			
we used ambiguous			
language such as "The			
sample mean is			
around the population			
mean" or "The			
population mean is			
roughly the same as			
the sample mean". By		• Refer to the two problems identified at the start of Section	
constructing a		D.	
confidence interval we			
are now providing a			
measure of how close			
a sample mean is likely	r l	Open the GeoGebra file	
to be to the		"The95%ConfidenceInterval.ggh"	
population mean.		• Set the confidence level 95%	
		 Set the commence level 55%. Set the cample size to 100 	
 This was the second of 		 Click on the "Show C L for a Sample Mean" button 	
the problems we		click of the show c.i. for a sumple mean succon.	
identified at the start			
of Section B.			
It may be useful to			
visualise the 95%			
confidence interval in			
another way. To do so			

I am going to use			
GeoGebra.		Click on the "Generate 1 sample" button 100 times to	
 The shaded area shows the 95% confidence interval for a sample mean. I am going to generate 100 samples of size 100 and plot their means. How many of these 		generate 100 sample means.	 Can students predict how many sample means will fall within the OFW confidence interval?
• How many of these samples will have	• Most of thom	$\mu = 1.00 \frac{\sqrt{n}}{\sqrt{n}}$ $\mu = 1.00 \frac{\sqrt{n}}{\sqrt{n}}$	95% confidence interval?
means which fall	 95% of them 		
within the 95%	 Approximately 95% of them. 	 Click on the "Generate 1 sample" button in the 	
confidence interval?		GeoGebra file "The95%ConfidenceInterval.ggb" to	• Do students understand that it is
• Why don't exactly 95% of the sample means fall within the 95% confidence interval?	 We're only looking at a small number of all the possible sample means. 	generate a single sample and to see if the sample mean falls within the 95% confidence interval.	unlikely that exactly 95% of the sample means will fall within the 95% confidence interval?
	• If we looked at all the possible		
 Before I click the "Generate 1 sample button" in the GeoGebra file, are you certain that its mean will fall inside our interval? 	 sample means it would be 95%. Yes. No. It's very likely but not certain. I'm 95% confident. There's a 95% chance that it 	 Refer to The Empirical Rule under Section C of the board plan to remind students that it is possible to construct other confidence intervals. In the GeoGebra file "The95%ConfidenceInterval.ggb" change the confidence interval from 95% to 68%. Click on the button "Show C.I. for a Sample Mean". Generate 100 samples by repeatedly clicking the "Generate 1 sample" button or by clicking the 	 Can students relate the 95% confidence interval to the probability of a single sample having a mean within the interval? Do students understand that it's
	will.	"Generate 100 samples" button.	possible to construct intervals with a different confidence level?

•	We have focused on constructing a 95% confidence interval for a sample mean. Do you think it's possible to construct other types of confidence interval? Explain.	 Yes. Yes we could construct a 68% confidence interval or a 99.7% confidence interval. We could use z-scores to construct any confidence interval we like. 	 Highlight the fact that we have focused on the 95% confidence interval under Section C of the board plan. 	•	Do students understand the difference between a 68%, 95% and 99.7% confidence interval in terms of how confident we can be in predicting the value of a sample mean?
•	It is possible to construct any confidence interval you like.			•	Do students understand that we focus on a 95% confidence interval because it is the most
•	Why then have we focused on the 95% confidence interval?	 It's less work. The other confidence intervals are too bard 			commonly-used interval in statistical studies but that it is possible to use z-scores to construct any confidence interval?
•	We focus on the 95% confidence interval because it is the most- commonly-used confidence interval in statistical investigations.	 It's more important. It's the one which is most used. 			
•	For Question 3 of Section C: Student Activity 1, what values did you get for your 95% confidence interval?	• 4.2 - 6.04.			

 Is this 95% confidence interval the same as the 95% confidence interval you calculated in Question 2 of Section C: Student Activity 1? How can this be, given that we are dealing with the same population? How can 	 No. No – it's wider. This 95% confidence interval is wider. We're using a smaller sample. 	 Remind students of the calculation of the 95% confidence interval and of the relationship between σ_{x̄} and sample size. Use the GeoGebra file "The Distribution Of Sample Means age" to generate 100 	 Do students understand how sample size affects the width of a confidence interval?
 Why does sample size affect the 95% confidence? 	 The population is the same but the distribution of sample means is not. We have a wider distribution of sample means because we are using a smaller sample size. The standard deviation of the distribution of sample means is bigger because sample size is smaller. 	 InedistributionOrSampleMeans.ggb to generate 100 sample means with a sample size of 50 and repeat with a sample size of 30. Highlight the wider distribution of sample means for a sample size of 30. Under Section C of the board plan, write the following: "As sample size increases the width of a confidence interval decreases". 	 Do students understand why sample size affects the width of a confidence interval?
	 The confidence interval is constructed using the standard deviation of the sample means. We know that the sample size affects this. The confidence interval depends on σ_{x̄} and we know σ_{x̄} = σ/√n. 	 Under Section C of the board plan write the following: "Larger sample size gives us a greater ability to predict sample-mean values". 	

 Can you explain why statisticians usually prefer to use as large a sample size as possible? 	 In smaller samples there will be greater variation in the means. Extreme values in a sample will have more of an effect if the sample is small which causes greater variation in the sample means. Smaller sample size produces a wider distribution of sample means. This increases the width of the 95% interval. 		 Do students understand that a larger sample size means a narrower confidence interval and a greater accuracy in predicting a single sample mean?
 We looked briefly at three different confidence intervals (68%, 95% and 99.7%). 	 Because the sample means will not vary as much. The sample means are more likely to be closer to the population mean. For a single sample chosen from the population I can be more confident that its mean will be closer to the population mean. 95% of the possible sample means will fall within a shorter distance from the population mean. Your 95% confidence interval will be smaller so your sample mean is more likely to be closer to the population mean. 	 Open the GeoGebra file "The95%ConfidenceInterval.ggb". Change the confidence interval to 68%. Click on the button "Show C.I. for a Sample Mean" and note the range of this interval. Change the confidence interval to 95%, click on the button "Show C.I. for a Sample Mean" and note the range of this interval. Change the confidence interval to 99.7%, click on the button "Show C.I. for a Sample Mean" and note the range of this interval. Change the confidence interval to 99.7%, click on the button "Show C.I. for a Sample Mean" and note the range of this interval. Under Section C of the board plan write the following statement: "The greater the level of confidence, the wider the confidence interval". 	 Do students understand that higher confidence means a wider interval and why this is so?

•	 Looking at these again in Q1 (d) of Section C: Student Activity 1, do you notice anything about the widths of the different intervals? Why does the width of the confidence interval increase as the level of confidence increases? 	 You can predict a sample mean with greater accuracy. They're different. The confidence intervals get wider as the level of confidence increases. 	 As you summarise what we've learned about confidence intervals, refer to the various information under Section C of the board plan. 	 Can students explain why a higher level of confidence requires a wider interval? Do students have a general sense of what a confidence interval tells us about the mean of a single sample?
	 So we've now discovered another way to describe how the sample means vary about the population mean 	 Because of sample size (incorrect). If you want the interval to capture a higher percentage of the sample means it will need to be wider. If you want to be more confident that the interval will capture a given sample mean, the interval will need to be 		 Do students understand that a confidence interval provides a way of describing the variation in the means of different samples using the mean of the population?
	 We've seen that we can use a confidence interval to predict the likely value of a single 	wider.		
	 sample mean. More specifically we've seen that we can use z-scores to construct an interval. 			

within which we can		
be 95% confident a		
single sample mean		
will reside. This is an		
improvement on the		
indefinite language of		
"close to" and		
"approximately" we		
had been using to		
describe the		
relationship between		
a sample mean and		
the population mean.		
 We've seen that a 		
larger sample size		
reduces the width of a		
confidence interval,		
thereby giving us a		
greater power of		
prediction for a single		
sample mean.		
 We've also seen that 		
as we increase our		
confidence level the		
width of our		
confidence interval		
must increase.		
• We've seen that we		 Do students recognise that our
can use z-statistics or		ability to construct a confidence
confidence intervals as		interval is predicated on the fact
another way to		that the distribution of sample
describe the variability		means is normal?
of sample means and		

•	to describe the relationship between the mean of a single sample and the mean of a population. The ability to construct a 95% confidence interval is based on the fact that the distribution of sample means is normal. If it were not normal we would not have been able to do this in the way we did (using z-scores).	 I don't know. Because our population is 	 Use the various distributions on the board plan to highlight the fact that all the sampling distributions we 	 Do students recognise that we don't yet know if the distribution
	the distribution of sample means normal? Is it always normal?	 normal. The population from which the samples are drawn is approximately normal so maybe that's why. 	have constructed for this population are normal.	of sample means is always normal or if it's only normal under certain circumstances?
•	is it reasonable to suggest that the			
	reason the distribution			
	of sample means is			
	normal is because the			
	population is normal.			
	Let a myeangate.			

	 I'm going to change my population distribution from one which is approximately normal to one which is uniform. What shape do you think the corresponding distribution of sample means will be? I'm using a sample size of 36. 	Flat.UniformNormal.	 Open the GeoGebra file "TheDistributionOfSampleMeans.ggb". Click the "Uniform Distribution" button. Make sure the default sample size is 36. 	 Do students understand that a different population may produce a distribution of sample means which is not normal?
•	 Is the distribution of sample means for our uniform population as you might expect? How can a uniform population produce a distribution of sample means which is normal? 	 No. No – it's normal. No – I suspected it would be uniform. I don't know. It must have something to do with how the values in the samples combine to generate a sample mean. The different sample means you can get from the population must be normal. 	 Click on the "Generate 100 samples" button ten times to create a distribution of sample means consisting of 1000 values. 	 Do students recognise that the distribution of sample means for a uniform population is not uniform? Do students recognise that the distribution of sample means for a uniform population is normal? Do students realise that this is a surprising result?
•	In fact, there is a theorem in mathematics which			 Do students understand that we've demonstrated that this distribution of sample means from a uniform population is normal

•	proves that a population can have any shape but its distribution of sample means will be normal. This is only true provided the sample size is large enough (This is the Central Limit Theorem). Why do you think the distribution of sample means is normal only for samples big enough?	 You need a certain number of values in your sample so that one extreme value won't skew the sample means. Smaller samples will be more affected by an extreme value which will result in a distribution of sample means which is not normal. You need enough pairs of values to combine to produce a sample mean close to the population mean. 		 but have not proved that the distribution of sample means is always normal? Do students understand what the Central Limit Theorem says? Can students offer suggestions as to why the distribution of sample means is normal only if the sample size is large enough? Do students have a feel for the minimum sample size needed for the distribution of sample means to be normal?
•	How big does a sample need to be to produce a distribution of sample means which is normal? In fact, for a population distribution of any	 I don't know. It works for 36 so a value close to that. 	 Click the "Reset" button and change the default sample size to 10. 	 Do students understand that a sample size of at least 30 is needed for a population distribution which has any shape to have a distribution of sample means which is normal?

Click on the "Generate 100 samples" button ten times to create a distribution of sample means consisting of 1000 values.

- Use a marker to "throw a rope" over the distribution of sample means, thereby highlighting its asymmetry and the fact that it is not normal.
- Repeat the above steps using a skewed population to reinforce the fact that irrespective of the population distribution, once you choose a large enough sample, the distribution of sample means will be normal.

- Click the "RESET" button on the GeoGebra file.
- Change the population distribution to "NORMAL".
- Change the sample size to "10".

 Do students understand that the distribution of sample means of a normal population distribution will be normal for sample sizes less than 30?

for sample sizes much		Click on the "Congrate 100 samples" 20 times to	
cmaller than 20		• click on the Generate 100 samples 50 times to	
smaller than 30.		produce a distribution of samples means with 2000	
		values in it.	
		 Highlight the normal shape of the distribution of 	
		sample means with a sample size of only 10.	
		 Sample means with a sample size of only 10. Inder Section C of the board plan write the following statements: "The distribution of sample means is normal for any population, provided the sample size is 30 or more". "The distribution of sample means is normal for sample sizes less than 30 if the population is normal" Encourage students to make their own notes 	
		summarising the board plan.	
		 Move around the classroom to ensure that all students. 	
		• Wove around the classroom to ensure that an students	
	 Students complete Q4 of 	understand what they are meant to be doing.	
	Section C: Student Activity 1.		
	·····		
In light of our new			 Do students understand that even
knowledge I would like			though the population distribution
you to answer			is positively skewed, because the
Question 4 of Section			sample size exceeds 30. the
			· · · · · · · · · · · ·

	C: Student Activity 1.	Normal.		corresponding distribution of
	You may work in pairs.	 Bell-shaped. 		sample means is normal?
•	What shape will the distribution of sample means be? Why is this?	 Normal because our sample size is large enough. Normal, because the distribution of sample means will always be normal once the sample size is above 30. 		
•	Why won't John's distribution of sample means be normal?	 Because his sample size is too small. Because his sample size is 20, which is less than the cut-off for normality. 3.39 – 4.55. 	 Write up the calculation of the 95% confidence interval on the board. If student need reminding of the meaning of a 95% confidence interval, use the GeoGebra file "The95%ConfidenceInterval.ggb" to do so. 	• Do students understand that because the sample size is less than 30 and the population is not normal, the corresponding distribution of sample means will not be normal?
•	What range of values did you get for the 95% confidence interval? What does the 95% confidence interval tell us?	 It tells us where the mean of a sample is most likely to be. It tells us where 95% of all the sample means will lie. It tells us where 95% of all the sample means from samples of size 50 will lie. It tells us that before we take a sample there is a 95% probability that its mean will fall within this interval. 		 Can students calculate the 95% confidence interval for a sample size of 50? Can students explain the meaning of the 95% confidence interval?
		 You can only work out a 95% confidence interval for a 		

•	Why do you think you weren't asked to work out the 95% confidence interval for John's sample?	 normal distribution and John's distribution of sample means is not normal. John's sample size means that his distribution of sample means will not be normal. So we cannot use z-scores to construct a confidence interval. 		• Do students understand that you cannot use z-scores to construct a 95% confidence interval if the distribution of sample means is not normal?
•	We have discovered a lot of new statistics which are very important.			
•	Let's take some time to summarise what we've learned.			
•	I want you to work in pairs to answer Section C: Student Activity 2.	 Students work on answering Section C: Student Activity 2. 	 Distribute copies of Section C: Student Activity 2 to all students. Walk around the room to check that all students understand what they are meant to be doing. If students are having difficulties, use suitable questioning to help them. Use the board plan to highlight information which is important for answering Section C: Student Activity 2. Display the solutions to the matching activity on the board. 	 Can students use their newly-acquired statistical information to correctly match one element from each set? Can students use logic to sort their way through the matching activity? Can students verbalise how they are matching each element to one another?
•	matched up each set correctly. What information did you use to match the		 Use the board plan to highlight the specific facts that allow students to correctly match up each set. 	

	distributions of sample	The fact that both	 Can students identify the
	means (set B) to the	distributions are centred on	relationships which allow them to
	population	the same value.	match Set B to set A?
	distributions (set A)?	• $\mu_{\bar{x}} = \mu$.	 Do students recognise that there
		 The mean of the sample 	may be different relationships
•	How did you match	means is equal to the	which allow them to match
	the population mean	population mean.	elements of one set to elements
	and population		of another?
	standard deviation		 Can students identify the
	(set C) to sets A & B?	 By inspecting where the 	relationships which allow them to
		centre of each distribution is.	match Set C to the already-
•	What information did	 By comparing the population 	matched sets?
	you use to match the	mean to the centre of each	 Can students identify the
	mean of the sample	distribution.	relationships which allow them to
	means and the	 I compared the means of the 	match Set D to the already-
	standard deviation of	sample means to the centre of	matched sets?
	the sample means (set	the sampling distributions.	
	D) with sets A, B and	 I compared the means of the 	
	C?	sample means to the	
		population means.	
		 If there were different 	
		sampling distributions with	
		the same mean I used the	
		sample size to decide one was	
		the correct match.	
		 In the case of sampling 	
		distributions with the same	
		mean but different standard	
•	How did you match	deviations I matched the	
	set E to the already-	narrower distribution with the	Can students identify the
	matched sets?	standard deviation which used	relationships which allow them to
		the larger sample size.	match Set E to the already-
			matched sets?

	 I matched the ones with the 	
	same value for $\mu_{\bar{x}}$.	
	In the case of two elements of	
	set E having the same value	
	for $\mu_{ar{\chi}}$ I worked out the	
	standard deviations of set D	
	and chose the one with the	
	matching value of $\sigma_{\bar{x}}$.	
	 In the case of two elements of 	
	set E having the same value	
 How did you match 	for $\mu_{\bar{x}}$ I decided which to use	
set F to the already-	by matching the wider	 Can students identify the
matched sets?	sampling distribution to the	relationships which allow them to
	higher value for $\sigma_{\bar{x}}$.	match Set F to the already-
	• I worked out the 95%	matched sets?
	confidence interval using the	
	values of $\mu_{\bar{x}}$ and $\sigma_{\bar{x}}$ already	
	chosen.	
	 I estimated the 95% 	
	confidence interval by	
	inspecting the distribution of	
	sample means.	
	I matched the element of set F	
 How did you match 	which said it was not possible	 Can students identify the
the sample size (set G)	to construct a 95% confidence	relationships which allow them to
to the already-	interval with the set which	match Set G to the already-
matched sets?	had a non-normal distribution	matched sets?
	of sample means.	
	• Sample size appears in the	
	calculation of $\sigma_{\bar{x}}$ so I matched	
	the correct sample size with	
	the correct element of set D.	

 What information did you use to match set H with the already- matched sets? 	 Since sample size affects the width of the distribution of sample means I matched smaller sample sizes to wider sampling distributions. Since sample size affects the width of the 95% confidence interval I matched smaller sample sizes with wider confidence intervals. Set H shows the calculation of the 95% confidence interval so I worked out each one and matched them to the correct set by comparing them to set F. The value of σ_{x̄} appears in the calculation of the 95% confidence interval so I compared set H to set D to make the correct maths. 		 Can students identify the relationships which allow them to match Set H to the already-matched sets? Do students see the many relationships which exist between the distributions of sample means and a population distribution?
SECTION D - Building a	95% confidence interval for a	population mean	
 We started this lesson with a simple question: "What is the average weight of an Irish-secondary-school student's schoolbag? " 	•	 Refer to the relevant information in Section A of the board plan. 	 Do students recall what the original aim of our statistical investigation was?
 As we answered this question we progressed through 			 Do students recall the problem of sampling variability?

the data-handling cycle but discovered a problem with using a single sample to answer a question about a population, namely that of sampling variability.	ata-handling but discovered a em with using a e sample to er a question t a population, ely that of ling variability.		 Can students describe in their own words what sampling variability is, why it happens and its implications for statistical investigation?
 We saw that, because of sampling variability, it is not correct to infer that the mean of a population is equal to the mean of a 	aw that, because mpling variability, ot correct to that the mean of pulation is equal e mean of a		• Do students understand $\mu \neq \bar{x}$?
 We saw that we could get around this problem somewhat by using indefinite language such as "The population mean is roughly the same as 	aw that we could round this em somewhat by indefinite lage such as "The lation mean is		• Do students understand that using the language of approximation we can still relate μ and \bar{x} but that we need to do this mathematically?
 the sample mean" but agreed that this is too subjective. In an attempt to come up with a more precise way to describe the variation in the sample means, we carried out an in-depth investigation of the 	ample mean" but ed that this is too ective. attempt to come ith a more precise to describe the tion in the sample as, we carried out -depth tigation of the	 Refer to the relevant information in Section B of the board plan. 	 Do students recall the key relationships which exist between a population and its distribution of sample means?
 In an attempt to come up with a more precise way to describe the variation in the sample means, we carried out an in-depth investigation of the different sample 	attempt to come ith a more precise to describe the tion in the sample ns, we carried out -depth tigation of the rent sample	 Refer to the relevant information in Section B of the board plan. 	 Do students recall the relationships which a population and its sample means?

means that one can		
get from a population.		
In doing so we		
discovered many		
useful facts about the		
distribution of sample		
means.	• Refer to the relevant information in Section C of the	
Ultimately we learned	board plan.	
that, while different		 Do students understand that a
samples will produce		95% confidence interval gives us a
different means and		mathematical way to relate the
we cannot predict the		mean of a single sample to the
values of these, we		mean of a population?
can construct an		
interval in which a		
sample mean is very		
likely to reside.		
The interval we chose		• Do students understand that we
to construct is a 95%		can create any confidence interval
confidence interval.		we like but that we choose to
That is, while different		focus on a 95% confidence
samples will produce		interval?
different means we		
can be 95% confident		
that any sample will		
have a mean that falls		
within this interval.		
So we used a		
confidence interval to		
move from a		
subjective statement		
"The sample mean is		
roughly the same as		
the population mean"		
--	--	---
to a mathematical		
statement "I am 95%		
confident that a		
sample mean lies		
within $\pm 1.96\sigma_{\overline{\chi}}$ of		
the population		
mean".		
 This is a statement 		
relating the mean of a		 Do students recognise that our
single sample to the		95% confidence interval relates
mean of a population.		the mean of a single sample to the
We are now going to		mean of a population whereas we
adapt it to do what we		want to relate the mean of a
originally set out to do		population to the mean of a single
– to make a fair		sample?
statement about the		
mean of a population		
using the mean of a		
single sample.		 Do students understand that we
• In other words we are		need to reverse our relationship in
going to learn how to		order to accomplish what we first
write the relationship		set out to do?
we developed in		
Section C in reverse.		
 Let's return to our 		 Do students recall the original
original investigation.		investigation?
If you recall we had a		
simulated population		
of schoolbag weights		
with a specific mean		
and standard		

•	deviation. ($\mu =$ 5.12, $\sigma = 2.57$). I would now like you to construct a 95% confidence interval for the mean of a single sample of size 36, drawn from this	 Students complete the calculation for a 95% confidence interval for a sample of size 36. 	 Under Section D of the board plan, write up the 95% confidence interval for a sample of size 36. 	 Can students calculate the 95% confidence interval for the mean of a sample of size 36?
•	population. What range of values did you get for the 95% confidence interval?	• $4.28 - 5.96$ • $4.28 \le \bar{x} \le 5.96$ • 5.12 ± 0.428 • $5.12 \pm 1.96 \frac{2.57}{\sqrt{36}}$		
•	What does this interval mean?	 95% of all possible sample means of size 36 will fall within this interval. Before I choose a single sample of size 36, I can be 95% confident its mean will fall within this interval. I can be 95% confident that the mean of a single sample 	 Open the GeoGebra file "The95%ConfidenceInterval.ggb" Set the confidence interval to 95%. Set the sample size to 36. Click on the "Show C.I. for a Sample Mean" button. 	 Can students explain what the 95% confidence interval for a sample mean means?
•	During Section A of this lesson each group calculated their own sample mean. When we plot these we can see that, as expected, most of them fall within our 95%	will fall within 5.12 \pm 0.428.	 Refer to the list of sample means written under Section A of the board plan. Use the "Input Sample" button in the GeoGebra file "The95%onfidenceInterval.ggb" to input each group's sample mean and sample standard deviation. Do not close the GeGebra file. Remind students that we are only looking at a tiny number of samples and that if we had more samples, we would clearly see that ~95% fall within our confidence interval. 	 Do students understand that the 95% confidence interval for a sample mean does what it's supposed to?

	confidence interval for a sample mean.	 Under Section D of the board plan write the 95% confidence interval for the mean of a single sample, labelling it as such. 	 Do students understand that we
•	Remember this	Add an additional label of "A statement about the	are dealing with a statement
	confidence interval is	mean of a single sample based on the mean of the	about a sample mean?
	a statement about the	nonulation	
	mean of a single	population	
	sample.		
	samplei		Do students understand that we
•	Let's now change this		want a statement about a
	into a statement		nonulation moon?
	about the mean of the		
	population.		
	P - P		 Do students understand that the
•	To do so I want vou to	allador Section D of the board alon write the following: "I	• Do students understand that the
	think of the 95% C.I.	• Onder Section D of the board plan while the following. I	95% confidence interval for a
	for a sample mean as	am 95% confident that x lies within ± 0.428 of 5.12	sample mean may be interpreted
	a distance either side		as a distance either side of the
	of the population		population means
	mean as opposed to		
	an interval between		
	two end values. In		
	other words we can		
	think of the 95%		
	confidence interval for		
	a sample mean as a		
	distance of $+0.428$		
	either side of 5.12"		
		Under Section D of the board plan write the following:	
•	More generally we can	"I am 95% confident that a single sample mean will light	
	say that the 95%	within 1.06π of the permittion mean"	
	confidence interval is	within $\pm 1.960_{\bar{\chi}}$ of the population mean .	
	between $\pm 1.96\sigma_{\bar{x}}$ of		
1	the population mean.		

			•	If needed, draw a diagram on the board showing how if		
•	If I'm 95% confident	 I don't know. 		A is a certain distance from B that B is the same	•	Do students understand that if I'm
	that the mean of a	• Yes it is.		distance from A.		95% confident that a single sample
	single sample will lie	• Yes, if A is a certain distance				mean will lie within a certain
	within $\pm 1.96\sigma_{\bar{x}}$ of the	from B then B must be the	•	Under Section D of the board plan write the following:		distance of the population mean
	population mean then	same distance from A.		"I am also 95% confident that the population mean will		then I am also 95% confident that
	is it fair to say that I			lie within $\pm 1.96\sigma_{\bar{x}}$ of a single sample mean."		the population mean will lie within
	am also 95% confident					an equal distance of a sample
	that the population					mean?
	mean will lie within					
	$\pm 1.96\sigma_{ar{x}}$ of the mean					
	of a single sample.					
					•	Do students understand that we
•	With this simple step					have changed a statement about a
	we have changed our					sample mean into a statement
	statement about a					about a population mean?
	sample mean to a					
	statement about a		•	Under Section D of the board plan write the following		
	population mean.			heading: "95% C.I. for a Population Mean".		
	Whereas hefore we				•	Do students understand we have
	had a 95% confidence					constructed a new type of 95%
	interval for the mean					confidence interval?
	of a single sample, we					
	now have a 95%					
	confidence interval for			Under Section D of the board plan write the following:		
	the mean of a		-	"The 95% C L for a nonulation mean provides a		
	population.			mathematical way to make a statement about the		
				population mean using the mean of a single sample".	•	Do students understand that this
•	We have now					change allows us to complete our
1	achieved what we set					original investigation; that is to
	out to achieve way					make a statement about the mean
1	back at the start of					
	Section A. We have a					

	mathematical way to			weight of the population of
	make a statement			schoolbags using a single sample?
	about the mean of a			
	population using the		• Under Section D of the board plan write the following:	
	mean of a single		"The 95% C.I. for a population mean is derived from the	
	sample.		95% C.I. for a sample mean".	
_				 Do students understand that the
•	How ald we construct	• Using the formula \bar{x} –		95% C.I. for a population mean is
	this new 95%	$1.96\sigma_{\bar{x}} \le \mu \le \bar{x} + 1.96\sigma_{\bar{x}}$		based on the 95% C.I. for a sample
	confidence interval,	• Using the 95% C.I. for a	• Under Section D of the board plan write the following	mean?
	that is, the 95%	sample mean.	"The 95% C.I. for a population mean: I can be 95%	
	confidence interval for		confident that the population mean will fall within this	
	a population mean?		interval".	 Do students understand what the
				95% C.I. for a population mean
•	What does this 95%	 It tells us the range of values 		does?
	confidence interval	over which the population		
	allow us to do?	mean is most likely to reside.		
		 It allows us to predict the 		
		population mean using the		
		mean of a single sample.		
		• It relates μ to \bar{x} with 95%		
		confidence.		
1		 It lets us make a 	• Use the descriptions of the 95% C.I. for a sample mean	
		mathematically-sound	from Section C of the board plan and the 95% C.I. for a	
1		statement about a population	population mean from Section D of the board plan to	
		mean using a single sample.	compare and contrast the two types of C.I.	
				• Do students understand that there
•	We now have two	• One allows us to predict what		are two different types of 95%
	different 95%	the mean of a single sample is		C.I.?
1	confidence intervals –	likely to be while the other		 Do students understand the
	the 95% C.I. for a	allows us to predict what the		difference between the two types
1	sample mean and the			of 95% C.I. we have constructed?
	95% C.I. for a			

	population mean. Can	mean of a population is likely		
	you explain the	to be.		
	difference between	 The 95% C.I. for a sample 		
	them?	mean uses a population mean		
		to predict the likely value of		
		the mean of a single sample.		
		The 95% C.I. for a population		
		mean uses a sample mean to		
		predict a likely value for the		
		population mean.		
•	Let's return to our			
	original schoolbags			
	problem and put our			
	new 95% confidence			
	interval to work.			
•	You all have your own	 Students work in groups to 	 Move around the room to ensure students understand 	 Can students complete the
	sample means from	complete the calculation of	what they are supposed to do.	calculation of their own 95%
	Section A of the	their own 95% confidence		confidence interval for the
	lesson. I want each	interval.		population mean?
	group to now use its			
	own sample mean to			
	complete the			
	calculation of your			
	own 95% confidence			
	interval for the			
	population mean.			
•	When you do this I			 Can students make a suitable
	want you to complete			concluding statement about the
	the statistical			mean schoolbag weight of the
	investigation we			population?
	started in Section A by			
	making a concluding			
	statement about the			

 mean schoolbag weight of the population. What did you get for your 95% confidence interval for the population mean? 	 Each group should respond with a different 95% confidence interval. 	 Add the various 95% confidence intervals for the mean of the population to Section D of the board plan. 	
 Do you all have the same range of values for your confidence interval for the mean of a population? 	 No. No but our intervals overlap quite a bit. 		 Do students recognise that there exist many 95% confidence- intervals for the mean of a population?
 Why is this? What statement did you make about the mean schoolbag weight of the population? 	 Because the 95% confidence interval for a population mean depends on the sample mean. It depends on x and each group has a different x value. Each group should respond with a statement based on their 95% confidence interval of the form "I am 95% confident that the mean schoolbag weight for the population is between" 	 Add each group's concluding statement to Section D of the board plan. 	 Do students understand why there are many different 95% confidence-interval for the mean of a population?
 So we all have different answers for the 95% confidence interval and different 	 No – we can't all have different conclusions. Yes because our 95% confidence intervals overlap 	 Highlight the different 95% C.I.'s and the different concluding statements under Section D of the board plan. 	 Do students understand that the fact the 95% confidence intervals

	statements about the	so our conclusions are actually		don't all agree is not the same
	mean schoolbag	very similar.		problem as the individual sample
	weight of the	• Yes because we're not saying		means not agreeing?
	population. Is this	that the mean weight is		
	acceptable?	definitely within our interval,		
		rather we're attaching a level		
		of confidence to our		
		conclusion.		
•	Isn't this the same	 It's not the same problem 		
	problem we	because we're using a range		
	encountered when we	of values in our conclusion as		
	tried to complete our	opposed to a single value.		
	investigation in	• It's not the same. We're using		
	Section A of the	an interval and many of our		
	lesson?	intervals overlap.	 Return to the GeoGebra file 	
			"The95%ConfidenceInterval.ggb".	
•	It may be helpful to		 Click on the button "Show C.I.'s for the Population 	
	visualise our		Mean" to show each group's sample mean and their	
	conclusions to		corresponding 95% confidence interval.	
	understand if it is			
	acceptable to have		_	
	different conclusions			
	here.		••	
		 They're all different. 		
•	What do you notice	 They're different but they 		• Can students see that the 95%
	about the 95%	overlap a lot.		confidence intervals for the
	confidence intervals?	 Most of them capture the 	0	population mean tend to capture
		population mean.		the population mean?
•	we see that, although		•	
	every group \$ 95% C.I.		3 32 34 36 38 4 42 44 46 48 525754 56 58 6 62 64 66 68 $7_{(7,5,2,7)}$	
	and concluding			
	different most of		 Highlight the fact that most of the 95% C.I.'s capture the 	
	מוויבו בווג, וווטגרטו		population mean and so are acceptable statements.	

	them capture the			
•	This means they are acceptable statements about the population mean.			 Can students understand that, although each group's concluding statements are different, because they capture the population mean they are all acceptable?
•	Do all 95% C.I.'s capture the population mean?	No.Most of them do.		 Do students recognise that not all 95% C.I.'s and not all concluding statements capture the population mean?
•	Is this okay? Explain.	 No. The ones which don't capture the population mean are not valid statements (incorrect). Yes because we're not certain that our intervals capture the population mean. Yes because we're only 95% confident that our interval 		 Do students understand that, because we say we are only 95% confident, that this is okay?
•	How many of the 95% C.I.'s would you expect to capture the population mean?	 captures the population mean. Most of them. 95% of them. Approximately 95% of them 	 Remind students that we are only looking at a small number of 95% C.I.'s and that if we were to look at a much larger set, we would see that ~95% of them would capture the population mean. 	 Do students understand that only 95% of the 95% C.I.'s will capture the population mean?
•	So do we all agree that we now have a fair		 Under Section D of the board plan write the following: "A 95% confidence interval gives us a fair way to make a 	

•	and mathematical way to use the mean of a single sample to make a statement about the mean of a population? How do we make such	 Yes. Yes – but I honestly thought we'd never get there. 	statement about the mean of a population using the mean of a single sample".	 Do students understand that we've finally achieved what we set out to do – that is to use the mean of a single sample to make a fair and accurate statement about the mean of a population?
•	There is one remaining problem with this approach – in calculating the 95% confidence intervals we need the standard deviation of the sample means ($\sigma_{\bar{x}}$). We learned in Section B of this lesson that we can calculate this value using the standard deviation of the population ($\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$). The problem is we usually don't know σ when carrying out a statistical investigation.	 Using a confidence interval. Using the 95% confidence interval to a population mean. 	 Under Section B of the board plan, highlight the formula relating the standard deviation of the sample means to the standard deviation of the population (σ_{x̄} = σ/√n). Under Section D of the board plan highlight how the construction of a 95% confidence interval depends on the value of σ_{x̄}. 	 Do students understand that a 95% confidence interval is the tool for making a fair statement about the mean of a population using the mean of a single sample? Do students understand that in our construction of a 95% confidence interval we use the standard deviation of the population and that we won't always have this information?

•	How can we overcome this problem? Let's see if it's reasonable to replace σ with s.	 I don't know. Guess the standard deviation. Use the standard deviation of our sample (s). 		
•	What is the value of our population standard deviation (σ) ?			
•	What are the values of the standard deviation of our various samples?	• 2.57	 Under Section D of the board plan, write the value of the population standard deviation and the standard deviations of each group's sample. 	 Can students see that the standard
•	So <i>s</i> is a decent approximation for σ . In cases where we don't know the value of σ we use <i>s</i> as our best estimate.	 Each group responds with the standard deviation of their sample. 	• Under Section D of the board plan, write the following: "When constructing a 95% C.I. for a population mean use σ if you know it. Otherwise use <i>s</i> as your best estimate of σ .	 deviation of a single sample is a decent estimator of the standard deviation of the population? Do students understand that if we don't know the value for σ, we should use s as our best estimate?
•	Let's assume now that we don't know anything about our population of schoolbag weights. All we have is our sample of 36 schoolbag	 Students work on calculating a 95% confidence interval for 		 Do students understand that in most statistical investigations the only information you will have is about your single sample, namely

	to make a fair and mathematical statement about the mean weight of the population of schoolbags.	the population mean using their single sample.		its mean, standard deviation and size?
•	I want you to use your own sample mean and standard deviation to make a statement about the population		 Remind students that this is the information they are likely to have in a typical statistical investigation. 	 Can students use their single
•	mean. What statement did you make about the mean schoolbag weight of the population of			 sample to construct a 95% confidence interval for the mean of the population? Do students understand that they must use the standard deviation of their sample in calculating the 95% confidence interval?
•	secondary-school students? Are these fair	 I am 95% confident that the mean schoolbag weight lies between 		 Can students make a fair statement about the population mean using their single sample?
	statements? Explain.	 I can be 95% confident that the mean of the population of schoolbag weights is 	 Return to the GeoGebra file "The95%ConfidenceInterval.ggb". Click on the button "Show interval around x" to construct each group's 95% confidence interval. 	
		 Yes. Yes – they are all different but each one is an equally-correct 95% confidence interval. 	 Uncheck the checkbox "Use σ" so that each group's 95% C.I. is based on the standard deviation of their sample(s) as opposed to the standard deviation of the population(σ). 	 Do students understand that, although each group's interval is different, each interval is equally valid?

 The 95% confidence intervals are slightly different widths. We haven't seen this happen before. Why are the 95% confidence intervals different widths? 	 Yes as most of the confidence intervals will hold the population mean. Yes – a small number of the confidence intervals will not capture the population mean but this is okay as we're only saying we're 95% confident. Because we're using s as an approximation for σ and each group has a different value for s. The width of the 95% 	 Highlight the fact that using s instead of σ has a small effect on the 95% C.I.'s for the population mean and that most of the confidence intervals still capture the population mean. Checking and unchecking the checkbox "Use σ" may help to show this difference. Highlight the difference in width of each group's 95% confidence interval. 	 Do students understand why each group's confidence interval has a different width?
 In making this statement, we used z- scores to construct our confidence interval. Doing so assumes that we're dealing with a normal distribution. Can we assume this? Remember we know nothing about the population this time. 	 confidence interval depends on the standard deviation of the population. We are all using our own <i>s</i> values to approximate this and so we al get different widths. We are all using different values for <i>s</i> to approximate <i>σ</i>. Yes – the distribution of sample means is always normal once our sample size is over 30. Ours is 36. It doesn't matter what shape the population distribution is – it's the distribution of sample means we're interested in and this is normal. 	 Use Section B of the board plan to remind students that the distribution of sample means is normal if the population distribution is normal or if we're dealing with a sample of size ≥ 30. 	 Do students understand that it is the normality of the distribution of sample means which is important when constructing a 95% confidence interval for the mean? Can students recall the conditions which guarantee normality?

		•	Even though we know nothing				
			about the population				
			distribution it doesn't matter,				
			as our approach relies on the				
			distribution of sample means				
			being normal and it is since we				
			have a sample size ≥ 30 .				
•	The aim of our						
	statistical investigation						
	was to make a						
	statement about the						
	mean of the						
	population of						
	schoolbag weights. In						
	doing so we needed						
	the statement to be						
	mathematical and fair.						
•	I would now like you						
	to take a few minutes						
	to reflect on how we						
	do so.						
•	As you reflect, I would	\triangleright	Students work on answering	•	Hand out a copy of Section D: Student Activity 1 to	•	Can students identify the key
	like you to consider		Section D: Student Activity 1.		every student.		concepts which underpin the
	how to answer Section			•	Encourage students to discuss the main concepts on		construction of a 95% confidence
	D: Students Activity 1.				the board plan as they answer Section D: Student		interval?
					Activity 1.		
•	Would it be correct for	\triangleright	No.	•	Refer to Section A of the board plan to remind students	•	Can students recall the problem
	the GPA to state the	\triangleright	No because this is the result		of the problem of sampling variability.		of sampling variability and what it
	following: "The mean		of a single sample.				says about our ability to use a
	amount of time spent	\succ	No. This is the mean of a				single sample to make a
	training each week by		single sample. If we took a				statement about a population?
	all Gaelic players in		different sample we'd				

-							
	Ireland is 7.2 hours"?		probably get a different			•	Do students understand that we
	Explain.		result.				can't equate the population mean
			No – we cannot equate the				with the mean of a single sample?
			mean of a sample with the				
			mean of the entire				
			population.				
		\triangleright	No because of sampling				
	la it nossible then to		variability.	•	Refer to Section D of the board plan to remind students	•	Do students understand that a
•	is it possible, then, to				of the use of a confidence interval to relate the mean		confidence interval is the key to
	use the mean of the	۶	Yes.		of a sample to the mean of a population.		relating the mean of a sample to
	sample of 100 players	\triangleright	Yes – but we'll need to use a				the mean of a population?
	to make a statement		range of values.				
	about the population	\triangleright	Yes we can use a confidence				
	of GAA club players?		interval.				
		۶	Yes – by using a 95%				
			confidence interval.			•	Do students understand that it is
_				•	Refer to Section B of the board plan to remind students		the shape of the distribution of
•	To use z-scores to				that we need a distribution of sample means which is		sample means which is important
	construct a 95%	\triangleright	Yes – because if the sample		normal.		for constructing our 95%
	confidence interval we		size is ≥ 30 we are				confidence interval?
	the sample means are		guaranteed that the				
	the sample means are		distribution of sample means				
	distributed normally.		is normal. We're using a			•	Do students understand the
	Do we know that this		sample of 100 so the				conditions needed to guarantee
	is the case in this		distribution is normal.				normality of the distribution of
	investigation?	۶	Yes, the distribution of				sample means?
			sample means is normal				
			because we are dealing with				
			a large sample size.				
_				•	Refer to Section C of the board plan to remind students		
	It the sample size was				of the conditions which guarantee normality of the		
	less than 30 could We	\triangleright	No.		distribution of sample means.		
	construct a 95%	\triangleright	Not necessarily.				

 Confidence interval in the same way? What statement should the GPA make about the training regime of all Gaelic club players in Ireland? 	 Only if we know that the population distribution is normal. Even for sample sizes less than 30, the distribution of sample means can still be normal, provided the underlying population is normal. So if we knew the population was normal we could construct the 95% confidence interval. We can be 95% confident that the mean amount of time spent training every week is between 6.96 hours and 7.44 hours. The 95% confidence interval for the mean amount of time spent training every week by Gaelic club players is 6.96 hours – 7.44 hours. 	 Can students apply their knowledge to make a suitable statement about the population?
SECTION E: Hypothesis	Testing	
 We are now going to look at how we use statistics to test a claim. Can anybody explain to me what I mean 	When somebody looks for some money.	
when I say "claim"?	something belongs to them.	

	 When somebody claims something is true. When something is said to be true. 	
 When I say "claim" I mean something very specific – it is a statement about a population, usually without any proof or evidence. Can anybody give me an example of a claim they've seen or heard? 	 > 40% of people want a change in Taoiseach. > Duracell batteries last three times longer than other batteries. > The mean lifetime of an iPhone battery is 9.5 hours. > The mean industrial wage is €35,500. > 80% of women use a skincare product every day. • Under Section E of the board plan write the following: "Claim: A statement about a population without proof". 	 Do students understand what the word "claim" means in the context of statistics?
 In this lesson we are going to look at a specific type of claim – that involving a mean. 		
 Scientists make claims all the time and then carry out experiments to test their claims. Scientists use a different word to "claim". Does anybody know what the word is? 	 A theory (incorrect). A hypothesis. 	 Do students understand the meaning of the word "hypothesis" in the context of statistics?
 So we are interested in testing a claim or a 	 Under Section E of the board plan, add "Hypothesis" as an alternative word to "Claim". 	

	hypothesis. The way in which we do so is called a hypothesis test.		•	Title Section E of the board plan as "Hypothesis Testing on Means".	•	Do students recognise the need to investigate a claim or to test a hypothesis?
•	Can anybody explain why it is important to be able to test a hypothesis or claim?	 If you want to know if a claim is true. If you can't check a claim then people can claim anything they want. In science, the only way to know if something is true is to test it. If somebody's developing a new drug for treating illness you need to be able to test if it works. Companies claim stuff all the time in adverts. We need to be able to tell what's true and what's false. 			•	Do students understand that hypothesis testing provides a mathematical way to check if a claim is true or not and how important this is?
•	Let's look at one such claim: "An EU survey reports that the mean height of adult male Europeans is 181 cm with a standard deviation of 7 cm. An Irish newspaper carries out some research on this. They sample 100 adult Irish males and find that		•	Distribute copies of Section E: Student Activity 1 to all students. Encourage students to read through the claim in part (i) of the activity.		

	the mean of the sample is 179 cm. Based on this sample, are Irish males different in height to other Europeans (use a 5% significance level)?			•	Under Section E of the board plan write the following: "The null hypothesis is a statement about the		
•	hypothesis test we follow the data- handling cycle as normal.				population .	•	Do students understand that the null hypothesis is a statement of
•	We first state what is being claimed. This is the "ask a question" stage of the data- handling cycle. We call our statement of the claim the null hypothesis. The null hypothesis is a claim					•	the claim being made? Do students understand that the null hypothesis is a statement about the population?
•	about the population. Can you state the null hypothesis in this test?	AAAA	Irish men are different in height to other Europeans. The mean height of adult Irish males is not the same as that of other Europeans. Irish men are the same size as other European men. Irish men are taller than other Europeans.	•	Under Section E of the board plan, write up the different statements of the null hypothesis as given by students.	•	Can students correctly state the null hypothesis for this claim?

		\blacktriangleright	Irish men are smaller than other Europeans.				
•	We need to be very careful when we state the null hypothesis. The word "null" is short for "null effect" or "no change". When we state a null			•	Add the following to the description of the null hypothesis on the board plan: "A null hypothesis is a statement of no change ."	•	Do students understand that the null hypothesis must be a statement of "no change"?
•	hypothesis it should always be a statement of "no change". Are all the null hypotheses statements of no change?	AAA AAA	No. No – only one of them is. The only one that is a null statement is "Irish men are the same size as other European men". European men (wrong). Irish men. Adult Irish males.	•	Go through each statement of the null hypothesis on the board and mark those which do and do not meet the criteria for the statement of a null hypothesis. Explain why a given statement is or is not an acceptable null hypothesis. Encourage students to identify why some statements of the null hypothesis are acceptable and why others are not.	•	Can students identify null hypotheses which are valid for the given claim and those which are not? Can students explain why some null hypotheses are valid and others are not? Can students identify the population?
•	We also said that the null hypothesis is always a statement about a population. What is our population here?	À	The height of Irish men is the same as European men.	•	Add students' new statements of the null hypothesis to the board plan. Check that the new statements are acceptable.		

•	Since the null	≻	Adult Irish males have the				
	hypothesis should be a		same height as adult				
	statement of no		European males.				
	change and about a	\triangleright	Adult Irish males have a				
	population can we		mean height of 181 cm.	\triangleright	Add the statement "Adult Irish males have a mean	•	Do students understand that
	rethink what it should				height of 181 cm" to the list of null hypotheses and		there are many valid ways to form
	be in this case?				highlight it.		a null hypotheses but that we
							would like ours to include a
•	All of these are fine						measurement if possible?
	ways to state the null						
	hypothesis for this					•	Can students write the null
	case, however when						hypothesis using a measurement?
	you state the null						-
	hypothesis I would like						
	you to try to have a						
	measurement in your						
	statement if possible -						
	just like the statement						
	which says "Adult Irish						
	males have a mean						
	height of 181 cm". It						
	will make the						
	subsequent steps in a						
	hypothesis easier to						
	understand if the null				Add the mathematical statement of the null hypothesis	•	Can students use their knowledge
	hypothesis is stated in			ĺ	$(\mu = 181 \text{ cm})$ to the list of null hypotheses on the		of statistical notation to state the
	this way.		Yes: $\mu = 181 \ cm$ where μ is		board.		null hypothesis as a mathematical
			the mean height of the				equation?
•	Could we also use		population of adult Irish			•	Do students recognise that H_0 is
	mathematical notation		males.		Add the notation for the null hypothesis (H_0 : $\mu =$		the notation used to represent
	to state the null				181 <i>cm</i>) to the mathematical statements of the null		the null hypothesis?
	hypothesis?				hypothesis on the board.		

•	We use the symbol H_0 to represent the null hypothesis. The "0" is intended to represent "no change" or a "null effect".			 Do students understand that the "0" stands for "null effect" or "zero change"?
•	So the null hypothesis can be stated in words or using a mathematical equation.	 Move around the room to ensure that students understand what they are meant to be doing. Encourage students to check that their null hypothes 	is	 Do students understand how to take a claim and form a null
•	Learning to correctly state the null hypothesis is a skill to master with practice. With this in mind, I would like you to read each claim in part (ii) of Section E: Student Activity 1 and write a suitable null hypothesis for each	 Section E: Student Activity 1. is a statement of the claim, is a statement about the population and is a statement of no change. Encourage students to use words and symbols to statheir null hypotheses. Encourage students to have a measurement in their statement of the null hypothesis. 	e	hypothesis?
	one.	Leaving Certificate results in maths have not changed		 Can students form a valid null hypothesis?
•	For claim A of Section E: Student Activity 1 , what did you write for your null hypothesis?	 since 2014. The mean mark for Leaving Cert. maths in 2016 is 385. Leaving Certificate results in maths are the same in 2016 as they were in 2014. 		

 Are all of these statements about population? 	 ➢ H₀: µ = 385 where µ is the mean mark obtained in Leaving Cert. maths in 2016. ➢ Yes. ▷ Yes. 	 Do students recognise that the null hypothesis is a statement about the population?
 What is our population? 	 Leaving Cert. students in 2016. All 2016 Leaving Cert. students. Highlight the statement of the null hypothesis as an equation. 	 Do students recognise the
 Are all of these statements of no change? 	➤ Yes.	 importance of the null hypothesis being a statement of no change? Can students write the null hypothesis as a mathematical equation?
• For claim B of Sect E: Student Activity what is the null hypothesis?	 ion 1. The mean annual income has changed since 2012 (incorrect). 2. The mean annual income is different in 2016 to 2012 (incorrect). 3. The mean annual income has increased since 2012 (incorrect). 4. The mean annual income in 2016 is €38,280 (incorrect) 	 Can students form a valid null hypothesis? Can students form the null hypothesis as a statement about the population? Can students form the null hypothesis as a statement of no change? Can students write the null hypothesis as a mathematical equation?

		\checkmark	5. The mean annual income four-years later is the same				
			as it was in 2012.				
			6. The mean annual income				
		~	has not changed since 2012.		Use a suitable method to group like statements.		
			7. The mean annual income				
		~	in 2016 is €39,400.			•	Can students identify statements
•	We have a wide		8. $\mu = \text{€39,400}$ where μ is				which are similar in form?
	variety of statements		the mean annual income in				
	of the null hypothesis.		2016.				
	To help us sort and	~					
	check them I want you		Statements 1 – 4 are similar				
	to group similar		because they all talk about				
	statements together?		the mean annual income				
	Give a reason for your	~	changing.				
	choice of grouping.		Statements 5- 8 are similar				
			because they all talk about				
			the mean annual income in			•	Can students identify which
•	Can you identify any		2016 being the same as it				statements do not meet the
	statements which are		was in 2012.				criteria for a null hypothesis?
	not null hypotheses?	~		7			
	Explain your		Statements 1 – 4 are not null		Highlight the statements which are acceptable as a hull		
	reasoning.		statements. Nulls statements		hypothesis.		
			afe meant to be statements			•	Can students identify which
	Can you identify		or statements of shange				statements meet the criteria for a
	statements which are		are statements of change.				null hypothesis?
	accentable null	Δ	Statements 5 - 8 are	Δ	Encourage students to ask for help if they are unsure if		
	hypotheses? Explain	-	accentable. They all describe	-	their statements are accentable or not		
	your reasoning		no change from the original				Con students identify which
	your reasoning.		situation				statements are correct null
	Working in pairs I						bunothosos2
	want you to now						11400116363:

check that all your null-hypothesis statements in Section F: Student Activity 1	 Students work in pairs to check that they have constructed correct null hypotheses 		 Can students modify their incorrect null hypotheses so that they are suitable?
are statements of the claim, are statements about the population and are statements of no change.	nypotricoco.	Under Section E of the board plan, write the following description of the alternative hypothesis: "Alternative hypothesis: a statement of the counter claim".	 Do students understand that for
 Whenever we state a claim we also state the counter claim. If the claim is known as the null hypothesis then the counter claim is 			every null hypothesis there is a corresponding alternative hypothesis?
the alternative hypothesis.			- De students understand that the
 The alternative hypothesis is a statement which is 			 Do students understand that the alternative hypothesis is a statement which contradicts the alternative hypothesis?
contrary to the hull hypothesis. The alternative hypothesis states that the hull hypothesis is not true		"Alternative Hypothesis: A statement of change".	
 Looking at this in another way we can think of the 		Beside the description of the alternative hypothesis on the board, add the symbols H ₁ and H _A .	 Do students understand that the alternative hypothesis is a statement of change?
alternative hypothesis		Write up the different student statements of the alternative hypothesis.	

			~			
	as a statement of change.			Go through each statement and explain why it is an acceptable or unacceptable statement of the alternative hypothesis.	•	Do students understand that H_1 or H_A is used to represent the alternative hypothesis?
•	We use H_1 or H_A to represent the alternative hypothesis.	> Adult Irish males are taller			•	Can students correctly state the
•	If we look at our original claim in part (i) of Section E: Student Activity 1 , how would you state the alternative hypothesis.	 Adult first finales are tailed than adult European males (incorrect). Adult Irish males are smaller than adult European males (incorrect). Adult Irish males are not the same height as adult European males. The population of adult, Irish males does not have a mean height of 181 cm. μ ≠ 181 cm where μ is the mean height of adult Irish males. 				alternative hypothesis?
			A	Highlight the statement of the alternative hypothesis which has the following form: $\mu \neq 181 \ cm$.		
	We need to be careful when stating the alternative hypothesis to make sure it is a proper contrary statement of the null hypothesis.					

•	If the null hypothesis						
	says that a quantity						
	has a specific value,						
	the alternative						
	hypothesis should					•	Do students understand that
	state that it doesn't						writing the null hypothesis as an
	have this value.						equation can be helpful in
				\triangleright	Circulate around the room and observe students'		forming a correct alternative
•	Writing the null				attempts to write down alternative hypotheses. Take		hypothesis?
	hypothesis as an				note of any statements that are worth discussing with		
	equation using				the class as a whole.		
	mathematical symbols						
	can be helpful in						
	identifying the						
	alternative hypothesis.				Go through each statement and explain why it is an		
	If H_0 : $\mu = a$ then the				acceptable or unacceptable statement of the		
	alternative hypothesis		Students work on completing		alternative hypothesis.	•	Can students write a correct
	is simply $H_0: \mu \neq a$.		Section E: Student Activity 1.				alternative hypothesis for each
			-				claim?
•	I now want you to						
	, return to Section E:						
	Student Activity 1 and						
	fill in the alternative						
	hypothesis for each		Maths results have changed				
	claim.		since 2014.				
		\triangleright	The mean mark obtained by				
•	What did you write as		Leaving Cert. students in				
	the alternative		maths is not 385.				
	hypothesis in Claim A	\triangleright	$\mu \neq 385$ where μ is the mean				
	of Section E: Student		mark obtained by Leaving				
	Activity 1?		Cert. students in maths in			1	
	-		2016.				
		\triangleright	$\mu=396$ (incorrect).			1	

• Why is it not acceptable to write the alternative hypothesis as $\mu =$ 396?	 > 396 is the mean mark for the sample and not the population. > This is not the literal contradiction of the null hypothesis. > There are many other value of µ which would make the null hypothesis false. We can't just look at one of them. > This is only one possible statement of µ ≠ 385. We need to consider all the values which makes this true. > The mean annual wage for people in full time 	 Can students explain why µ = 396 is not a correct alternative hypothesis? Can students state the alternative hypothesis correctly?
• For Claim B of Section E: Student Activity 1, what is the alternative hypothesis?	 Provident is €39,400. The mean annual wage in 2016 is the same as it was in 2012. The mean annual wage has not changed since 2012. μ = € 39,400 The mean annual wage is more than €39,400. (incorrect) The mean annual wage is less than €39,400. (incorrect) The mean annual wage is less than €39,400. (incorrect) The mean annual wage is less £38,280. (incorrect) 	

•	Can you identify which statements are acceptable alternative	AA	The last three alternative hypotheses are incorrect. The statements which say the mean wage is less than or more than are incorrect as they are not counter	AA	Go through some examples of suitable alternative hypotheses for statements C – J of Section E: Student Activity 1 . Encourage students to ask for help if they are unsure if their statements are acceptable or not.	•	Can students identify correct and incorrect statements of the alternative hypotheses? Can students explain what makes a statement a suitable alternative hypothesis?
	hypotheses and which are unacceptable? Give reasons for your choice.	\checkmark	statements of the null hypothesis. The final statement is incorrect as it is not a contrary statement of the			•	Can students change their incorrect alternative hypotheses so that they are suitable?
•	Working in pairs I want you to now check that the remaining alternative- hypothesis statements in Section E: Student Activity 1 are suitable.		null hypothesis.	A	Remind students that if $\mu = a$ is the null hypothesis then $\mu \neq a$ is the alternative hypothesis.		
•	It can be easy to write down an alternative hypothesis which is incorrect.					•	Do students understand that writing the null hypothesis as an equation and then writing the
•	By writing the null hypothesis as an equation, it is simple to then write down the alternative hypothesis. Once this is done it should make it easier for you to write down both						alternative hypothesis as an equation can help to state the alternative hypothesis as a sentence?

	hypotheses using everyday language.			
•	Now that we have our claim and counter claim, how can we test our claim?	 We need some data. We use the sample information. We use the other information provided in the question. 		 Do students understand that to test the claim we need some data?
•	If we return to the claim in part (i) of Section E: Student Activity 1 , what other information are we given?	 We are given information about a sample. We are given the standard deviation of the population, the size of the sample and the mean of that sample. 	 Write the population and sample information for part (i) of Section E: Student Activity 2 under Section E of the board plan. 	 Can students identify that they are given the hypothesised population mean, the standard deviation of the population, a sample mean and a sample size?
•	Our null hypothesis states that $\mu =$ 181 <i>cm</i> . Our sample mean is $\bar{x} =$ 178.9 <i>cm</i> . Does this data show that the null hypothesis is false? Explain.	 Yes (incorrect). Yes because we get a different value to what is claimed (incorrect). Yes because the data collected gives us a different answer to the null hypothesis (incorrect) No because the sample mean is very close to the population mean. No – this is just one of the possible sample means that you could get. A different sample could produce a value equal to the null hypothesis value. 	 Encourage students to explain their reasoning. Write the following under Section E of the board plan: "Because of sampling variability, we expect x̄ ≠ μ. This does not necessarily imply that the claim is false." 	 Do students understand that due to sampling variability, the chances of getting a sample from the population with a mean equal to the population mean is miniscule? Do students understand that a sample mean which is different to the hypothesised mean does not necessarily imply that the hypothesised value of the population mean is incorrect?

			-		<u>т</u>	1
		No it doesn't. Because of				
		sampling variability this is just	st			
		one of a huge number of				
		possible sample means that				
		are possible. Just because				
		one of these is different to				
		the hypothesised mean				
		doesn't make the claim				
		incorrect.				
•	So we are faced with a					
	similar problem to				•	Do students understand the
	that which we faced					challenge that sampling variability
	when we tried to use a					presents when trying to test a
	sample mean to make					claim using a single sample?
	a statement about the					ciann aonig a single sample.
	nonulation mean This					
	population mean: mis					
	variability and moans					
	that when we cample					
	unat when we sample					
	we are unlikely to get					
	a mean equal to the					
	hypothesised mean					
	but that this is not					
	necessarily because					
	the hypothesised					
	mean is incorrect, it					
	may just be because of					
	sampling variability.					
•	The solution to the					
	problem lies in our				•	Do students appreciate that by
	understanding of the		•	Distribute copies of Section E: Student Activity 2 to all		understanding sampling variability
	distribution of sample			students.		we can overcome this problem?
[means.				1	

			_			
•	Let's start to		•	Encourage students to draw an accurate sketch of the		
	understand how we			distribution of sample means.	•	Can students create an accurate
	can solve this problem	Students sketch the	•	Refer to Section B of the board plan to remind students		sketch of the hypothesised
	by first assuming that	distribution of sample means.		of the properties of the distribution of sample means		distribution of sampling means?
	the population mean			which they have already discovered.		
	really is $\mu = 181 \ cm$. I					
	want you to answer					
	Q1. of Section E:		•	Place a print-out of the distribution of sample means		
	Student Activity 2.			from Appendix B on the boar, under Section E.		
•	Describe the shape of					
	your sketch.		•	Mark in the mean of the distribution as the	•	Do students recall that the
		It's normal.		hypothesised mean ($\mu = 181 \ cm$).		distribution of sample means is
		It's symmetric.				normal?
•	Where is the	It's a normal curve.				
	distribution of sample				•	Do students recall that the mean
	means centred?	It's centred on the population				of the sample means is equal to
		mean.	•	Mark in the standard deviation of the distribution as		the mean of the population?
		\succ It's centred on 181 <i>cm</i> .		$\frac{\sigma}{\sigma} = \frac{7}{\sigma} = 0.7$		
		It's centred on the		$\sqrt{n} = \sqrt{100} = 0.71$		
•	How wide is the	hypothesised mean.				
	distribution of sample				•	Can students calculate the
	means?	It has a standard deviation of				standard deviation of the
		7 cm (incorrect).				distribution of sample means?
		It has a standard deviation of				
		0.7 cm.	•	Sketch what a normal distribution with a standard		
		It has a standard deviation of		deviation of 7 cm would look like on the board.		
•	Why is a standard	7				
	, deviation of 7 cm	√100			•	Can students explain why a
	incorrect?	Recause this is the standard				standard deviation of the
		deviation of the nonulation				distribution of sample means is
		We want the standard				not 7 cm?
		deviation of the sample				
		means				
		incuis.				

	 ➤ The standard deviation of the distribution of sample means is always smaller than the standard deviation of the population. ➤ The standard deviation of the sample means is √n times smaller than the standard deviation of the population. ➤ Well if the standard deviation was 7 we wouldn't be able to fit the distribution of sample means on the axis we were given. 		
 So if we're give hypothesised population me standard devia can easily pred the sample me from this popu will look like i.e can predict the associated dist of sample mea 	en a ean and ation we dict what eans ulation e. we e tribution ans.	• Mark in the single sample mean quoted in Section E : Student Activity 2 ($\bar{x} = 178.9 \ cm$) on the diagram on	 Do students understand that we can use the information given in a claim about a population to predict the range of sample means we are likely to get when we sample from this population?
 I'd like you to r the distribution single sample r 	mark on n, the mean	the board.	

	quoted by the Irish	> Students mark in the position		Can students locate the mean of
	newsnaner	of the sample mean on their		their single sample on the sketch
	newspaper.	distribution of sample means		of the distribution of sample
		distribution of sumple means.		moons?
				inearis:
			178 479 560 561 562 563 194	
			$\bar{x} = 178.9 \ cm$	
•	Do you think it's		• Write the following under Section E of the board plan:	
	possible to get a mean		"Assuming H ₀ is true, is sampling variability likely to	
	of 178.9 cm from a		give a sample mean of $\bar{\mathbf{x}} = 178.9$?"	
	single sample of size	Yes it's possible.	"Assuming H_0 is true and that this is the distribution of	• Can students interpret the
	100, given a	Yes because it is part of the	sample means is a sample mean of $\bar{r} = 178.9$ likely?"	distribution of sample means to
	distribution of sample	distribution.	sumple means, is a sample mean of $x = 170.9$ interve	get a sense of how likely a value
	means which is	It's possible but not very		of 178.9 cm is if a sample of size
	centred on 181 cm?	likely.		100 is selected from the
	Explain your	It's not likely, as the value is		population?
	reasoning.	far away from the centre of		
	0	the distribution.		
		It's unlikely as the value is		
		close to one the tails of the		
		distribution.		
		Yes but there's only a small	• Use the paster of the distribution of semple means to	
		chance since the area under	Ose the poster of the distribution of sample means to	
		the curve there is tiny.	to result from this distribution and those which are loss	
	Ma already know that		likely to result from it	
•	if we cample from a		ikely to result nom it.	
	n we sample from a			
	population with a			• Do students understand what the
	are likely to get a			distribution of sample means tells
	cample mean different			us about sampling?
	to 181 cm At the			
	came time our sketch			
	shows that it is more			
	if we sample from a population with a mean of 181 cm we are likely to get a sample mean different to 181 cm. At the same time our sketch shows that it is more			• Do students understand what the distribution of sample means tells us about sampling?

•	likely to get some sample means compared to others and that a sample mean of 178.9 cm is unlikely. In other words given the hypothesised population mean, sampling variability is unlikely to produce a sample mean of 178.9 cm.		 Under Section E of the board plan write in the answer to the previous two questions as "No". 	 Do students understand that a sample mean of 178.9 cm is unlikely due to sampling variability alone?
•	How then could we have gotten a sample mean of 178.9 cm?	 While it's unlikely to be down to sampling variability, it may still be. If the population mean is not 181 cm. If the distribution of sample means is shifted to the left. If the distribution of sample means was centred on a value less than 181 cm, sampling variability could more-easily produce a sample mean of 178.9 cm. If the mean of the sample means is less than 181 cm. If the null hypothesis is not true. 	 On the diagram of the distribution of sample means, sketch in a distribution of sample means with the same standard deviation, but shifted to the left. 	 Do students understand that a result of 178.9 cm suggests that the underlying distribution of sample means is incorrect? Do students understand that this result suggests that the distribution of sample means is more likely to be centred on a value less than 181 cm?

 If the sample mean is far enough away from the given hypothesised mean this suggests that this is not the correct distribution of sample means and that the hypothesised mean is incorrect. 	 If the hypothesised mean is incorrect. If the distribution of sample means is centred on a different value. This would mean that the hypothesised mean is not correct. 	Under Section E of the board plan write the following: "A large difference between $\bar{x} \& \mu$ suggests that the distribution of sample means is centred elsewhere and that H_0 is false."	 Do students understand that a sample mean far from the hypothesised mean suggests the hypothesised mean is incorrect? 		
 Up to now we have agreed that getting a value of 178.9 cm is unlikely due to sampling variability. We would like to quantify this uncertainty by working out the probability of getting a value of 178.9 cm, assuming the hypothesised distribution of sample means. Is this possible? 	 Yes. Yes – we're dealing with a normal distribution so we can use z-tables to calculate probability. We could use z-tables. No – we cannot calculate the probability of a single value using z-tables. All we can do is calculate the probability of getting a range of values. 		 Do students understand that z- tables have a role to play in calculating the probability of getting a value of 178.9 cm? 		
•	While we cannot use z-tables to calculate the probability of getting a single value of 178.9 cm (this probability is zero), we can calculate the probability of getting a value of 178.9 cm or a value even more extreme than this.		 Under Section E of the board plan, on the diagram of the normal distribution shade in the area to the left of 178.9 cm. Label this area as "P(x̄ ≤ 178.9)" 	•	Do students understand that it's not possible to use z-tables to calculate the probability of a single value, rather all you can do is work out the probability of a range of values? Do students understand that we will now calculate the probability of getting a value at least as extreme as 178.9 cm?
---	--	---	---	---	--
•	Given the hypothesised distribution of sample means, I now want you to calculate the probability of getting a sample mean at least as extreme as 178.9 cm or at least as far away from 181 cm as 178.9 cm is. You can show your calculation in Q3. of Section E: Student Activity 2 .	Students work on calculating the probability of the given event.	Probability $\bar{x} \le 178.9$ cm $\bar{x} = 178.9$ cm If students are having difficulties remind them of their understanding of the normal distribution and z-scores.	•	Can students work out a z-score and calculated the corresponding probability value using their z- tables?
•	How did you calculate the probability of	I calculated the area under the distribution to the left of 178.9 cm.		•	Do students use the correct value for standard deviation?

getting a sample mean which is at least as extreme as 178.9 cm given the hypothesised distribution of sample means? ►	I converted 178.9 cm to a z- score and then looked up this value in my z-tables to find the probability of getting a value less than or equal to z. I calculated a z-score and found the probability of this using the standard normal distribution in my Formulae & Tables booklet. $z = \frac{178.9-18}{0.7} = -3.$ $P(z \le -3) = 0.0013.$ $P(z \le -3) = P(z \ge 3) =$ $1 - P(z \le 3) = 0.0013.$ 1 - 0.9987.	• Under Section E of the board plan, write up the calculation of the z-score. $p = P(\bar{x} \le 178.9)$ $p = P(z \le \frac{178.9 - 181}{0.7})$ $p = P(z \le -3)$ • Remind students how to use their z-tables to calculate p: p = 0.0013	 Can students manipulate their z- table values to find the required probability?
 What is the probability of getting a sample mean with a value at least as extreme as 178.9 cm given the hypothesised distribution of sample 	0.0013.		• Do students recognise 0.0013 as a
 Is this value consistent with our earlier assumption about the likelihood of getting a 	Yes – we said it's unlikely and the probability value backs this up.	 Change the probability value written on the board from 0.0013 to 0.0026. 	 Do students recognise 0.0013 as a low probability? Do students understand that this result backs up our initial thoughts that the probability of getting a value of 178.9 cm, given the hypothesised mean, is small?

value of 178.9 cm?		• Do students understand that this
Explain.		result backs up our assertion that
•		the distribution of sample means
		is not as hypothesised and thus
		that the null hypothesis is false?
 Actually, the 		
calculation is		
incorrect. The		
probability of getting a		
value at least as		
extreme as 178.9 cm	> It's twice the probability that	 Can students identify that the
is. is not 0.0013.	we calculated.	correct probability is twice the
Rather the probability	> By multiplying our result by	value that they calculated?
is 0.0026.	two.	
• Where did I get this		
probability value	I don't know.	
from?		
• Why is the probability		
double our original		
calculation?		
 This may be 		
understood in a		
couple of ways.		
 We agreed that we 		
wanted to calculate		
the probability of		
getting a sample mean	Values which are less than	
at least as extreme as	178.9 cm.	
178.9 cm.		

•	What do we mean by "at least as extreme as 178.9 cm"?	 Values which are further from the population mean than 178.9 cm is. Values which are more than 2.1 cm away from the population mean. Values which are more than three standard deviations from the population mean. 		
•	So we need to identify all the sample means which are at least as far from the population mean as 178.9 cm is (i.e. sample means which are at least 2.1 cm or three standard deviations away from the population mean). Are the set of values to the left of 178.9 cm the only sample means which fall into this category?	 Yes (incorrect). No – there are a set of sample means on the other side of the population mean which satisfy the criterion. Yes there are values in the other tail of the distribution which are the same distance away from 181 cm as 178.9 cm is. All the values to the right of 183.1 cm are also at least as 	 Under Section E of the board plan, use the poster of the distribution of sample means to highlight the area of the distribution of sample means which is to the left of 178.9 cm. Highlight that values above 183.1 cm are just as extreme as values below 178.9 cm are and shade in the upper tail of the distribution above 183.1 cm to highlight this. 	• Do students understand that values at least as extreme as 178.9 cm include all the values below 178.9 cm and all the values above 183.1 cm?
				112

		far away from 181 cm as 178.9 cm is.		
•	So our calculation missed out on the area of the distribution of sample means which is the same distance from the population mean as 178.9 cm is but on the other side of the population mean i.e. the area of the distribution above 183.1 cm.		 Under Section E of the board plan, amend the p-value calculation to include the calculation of the area of the upper tail as follows: p = P(x̄ ≤ 178.9) + P(x̄ ≥ 183.1) p = P(z ≤ 178.9 - 181) + P(z ≥ 183.1 - 181) / 0.7) + P(z ≤ -3) + P(z ≥ 3) / p = 0.0013 + 0.0013 / p = 0.0026 Point out that the two shaded areas of the distribution of sample means are identical in size. Point out the symmetry of the normal distribution. 	 Do students understand why we are include a second area in our p-value calculation?
•	We can calculate this area (or probability) separately using our z- tables and when we include it in our calculation we get $p =$ 0.0026 as expected. Could anybody suggest a more efficient way to complete the	 Yes we can just double our initial probability. We can double the probability as the area to the left of 178.9 cm is the same as the area to the right of 183.1 cm. 		 Can students use the symmetry of the distribution of sample means to perform the p-value calculation more efficiently?

	calculation? Explain	Yes we can double the area		
	your reasoning.	to the left of 178.9 cm		
	, 0	because of the symmetry of		
		the normal distribution.		
•	The inclusion of the			
	upper tail of the			
	distribution may also			• Do students understand that the
	be understood by			inclusion of the values above
	examining the original			183.1 cm in our probability
	claim and the			calculation is because of the way
	associated			our hypothesis test is set up?
	hypotheses.			
•	For the given claim,			
	the null hypothesis			
	states that the mean			
	height of adult Irish			
	males is 181 cm while			
	the alternative			
	hypothesis states that			
	the mean height of			
	adult Irish males is not			
	181 cm.			
•	If the alternative			
	hypothesis was that		 Add the term "Two-Tailed Test" to a suitable location 	
	the mean height of an		under Section E of the board plan.	
	adult Irish make is less			
	than 181 cm we would			
	only have been			
	interested in the area			

_							
	below 178.9 cm as			•	Use the poster of the distribution of sample means to		
	these are the values				remind students that extreme values on either side of		
	which pertain to this.				the hypothesised mean are important in hypothesis		
•	For this reason,				tests of the form " H_0 : $\mu = a$ and H_A : $\mu \neq a$ ".		
	because of the nature						
	of the claim and					•	Do students understand why this
	counter claim, we						type of hypothesis test is known
	must also include the	\triangleright	Because the test is based				as a two-tailed test?
	area above 183.1 cm		around the probability of				
	in our probability		getting values in the two tails				
	calculation.		of the distribution.			•	Do students understand that
•	The type of hypothesis	\triangleright	Because sample means which				hypothesis tests of the form
	test used to test a		are far from the hypothesised				" $H_0: \mu = a$ and $H_A: \mu \neq a$ " are
	claim which is of the		mean on each side are				always two-tailed tests?
	form " H_0 : $\mu = a$ and		consistent with the null				
	$H_A: \mu \neq a''$ is usually		hypothesis being false.				
	called a two-tailed	\triangleright	Because it doesn't matter if				
	test. Why do you think		the sample means are less				
	this is?		than or greater than the				
			hypothesised mean. All that				
			matters is that they are				
			sufficiently different to be				
			unlikely because of sampling				
			variability.				
			Because the alternative				
			hypothesis is that the				
			hypothesised mean is not				
			true. Values which are much				
			less than the hypothesised				
			mean and values which are				
			much more than the	•	Write the following under Section E of the board plan:		
			hypothesised mean are both		"The p-value is the probability of getting a sample		

•	There are other types of hypothesis test	consistent with this alternative hypothesis.	mean at least as extreme as the given value, assuming the hypothesised population mean is correct".	•	Do students understand that there are other types of hypothesis test?
•	which are based on one tail of a distribution. We are not going to concern ourselves with these. The probability we calculated (0.0026) using the hypothesised distribution of sample means and the mean of our single sample is known as a p-value. Why do you think this is? The p-value is the	 "p" stands for probability. Because it tells us the probability of getting a value at least as extreme as our sample mean assuming the null hypothesis is true. 		•	Do students understand that the probability of getting a sample mean at least as extreme as the given value, assuming the hypothesised population mean is correct, is known as the p-value of the test?
	probability of getting a sample mean at least as extreme as the given value, assuming the hypothesised population mean is correct.			•	Do students understand that a small p-value suggests that the difference between the sample mean and the hypothesised mean is unlikely to be due to sampling variability alone?

If the p-value is			
sufficiently small, it is			
sufficiently stillall, it is			
such a sample mean			
could come from the			
hypothesised			
distribution of sample			
means i.e. it is highly			 Do students understand that a
unlikely that given the			small p-value suggests a false null
hypothesised			hypothesis?
population mean, such			 Do students understand that we
a sample mean could			have yet to decide what p-value is
be caused by sampling			small enough to imply a false null
variability.			hypothesis?
 This leads us to the 			
conclusion that for a			
small p-value, the			
hypothesised			• Do students understand that a p-
distribution of sample			value can take on any value
means is not correct	➤ 10% or 0.1	• Write the term "Significance Level" under Section E of	between 0 & 1?
so the hypothesised	➤ 5% or 0.05.	the board plan and add the following: "If $p < 0.05$ we	
mean and null	▶ 1 % or 0.01.	reject H_0 in favour of H_A " and " If $p \ge 0.05$ we fail to	
hypothesis are		reject (or we accept) H_0 ".	 Do students understand that
incorrect.			different tests may use different
• The next question is			p-values as the boundary for
how small does a p-			deciding to reject or fail to reject
value have to be to			the null hypothesis?
reject the		• Write the following under Section E of the board plan:	
hypothesised mean?		"If p is low ($< 5\%$) it's unlikely that the difference	Do students understand that we
Different tests use a		between our sample mean and hypothesised mean is	will use a n-value of 5% or 0.052
different cut-off point		due to sampling variability alone. The hypothesised	
For example when		mean is unlikely to be correct and we reject the null	Do students understand that the
soarching for the Higgs		hypothesis in favour of the alternative"	Do students understand that the
For example, when		mean is unlikely to be correct and we reject the null	• Do students understand that the

	Boson, CERN used a					known as the significance level of
	probability of					the test?
	0.000000286 as their		•	Write the following under Section E of the board plan:		
	cut-off point.			If p is not low ($\geq 5\%$) it is reasonable to assume that		
•	We are going to use a			the difference between our sample mean and		
	much larger cut-off of			hypothesised mean is simply due to sampling	•	Do students understand that a p-
	5% or 0.05.			variability. Therefore there is no evidence to suggest		value less than 0.05 means that
•	The cut-off point is			that the hypothesised mean is incorrect and we fail to		we reject the null hypothesis in
	often called the level			reject (accept) the null hypothesis.		favour of the alternative?
	of significance of the					
	test. Our level of					
	significance is 0.05.					
•	If we calculate a p-					
	value less than 0.05, it					
	is unlikely that the				•	Do students understand that a p-
	difference between					value of 0.05 or greater means
	our sample mean and					that we fail to reject the null
	population mean is					hypothesis?
	simply caused by					
	sampling variability					
	and we reject the null					
	hypothesis in favour of					
	the alternative.					
•	If we calculate a p-					
	value of 0.05 or					
	greater then it is					
	reasonable to assume					
	that any difference					
	between the mean of	.				
	our sample and the	We are rejecting the null				
	hypothesised mean is	hypothesis.	•	Write the conclusion for the hypothesis test on the	•	Can students determine if we are
	purely down to			board: "Adult Irish males are not the same height as		rejecting or failing to reject the
	sampling variability.			adult European males".		

		~				Т	
•	In such case we fail to		• We are rejecting the null				null hypothesis in Section E:
	reject the null		hypothesis because our p-				Student Activity 2?
	hypothesis (or we		value is less than 5%.			•	Can students explain what
	accept the null						rejecting the null hypothesis
	hypothesis).						means in the context of the
•	In our case, are we			• 1	Move around the room and make sure students		claim?
	rejecting or failing to			ι	understand what they are expected to do.	•	Do students understand the
	reject the null			•	If students are having difficulty use appropriate		importance of completing the
	hypothesis? Explain.			C	questions to help them understand the concepts		data-handling cycle and making a
•	In the context of the			r	needed to complete the hypothesis tests.		conclusion about the claim?
	original claim, what			• 9	See Appendix C for the solution to Section E: Student		
	does our rejection of				Activity 1.	•	Can students correctly sketch the
	the null hypothesis		Students work on completing	_	······································		distribution of sample means?
	mean?		the hypothesis tests in			•	From their sketch, can students
•	It is important to		Section E: Student Activity 1.				get a sense of whether the null
_	complete the data-						hypothesis is likely to be false or
	handling cycle and						not?
	make some						Con students calculate a 7 score?
	conclusion						Can students calculate a p value?
	conclusion.						Call students calculate a p-value?
						•	Do students remember to include
							both tails of the distribution in
							their calculation of the p-value?
•	we ve alscoverea now					•	Can students use the p-value to
	a deep understanding						correctly reject or fail to reject the
	of sampling variability						null hypothesis?
	underpins hypothesis					•	Can students use the result of the
	testing. Let's apply our						hypothesis test to make a
1	understanding by						conclusion about the population?
	carrying out a						
1	hypothesis test on						
	each claim in Section	1					
1	E: Student Activity 1.						
	As already discussed,	1					

we will use a significance level of		
5% in each test.		

Section B: Student Activity 1

The diagram shows the distribution of schoolbag weights for a population of 200 students.

Q1. Looking at the distribution, describe its:

(a) Shape

(c) Spread

Q2. If I take a sample of 36 from my population and calculate its mean, what is the likelihood that I will get an answer less than 3?

Very likely Likely Somewhat likely											
Somewhat unlikely Unlikely Very unlikely Extremely unlikely	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Explain your reasoning.											

Q3. If a take a sample of 36 from my population and calculate its mean, what is the likelihood that I will get an answer between 4 and 6?

Very likely											
Likely											
Somewhat likely											
Somewhat unlikely	Ó	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Unlikely											
Very unlikely											
Extremely unlikely											

Explain your reasoning.

Looking at the distribution of sample means, describe its

(a)Shape

(b)Centre

(c)Spread

Q5. Make a statement comparing the centre of the distribution of the sample means to the centre of the population distribution.

Q6. Make a statement comparing the spread of the distribution of the sample means to the spread of the population distribution.

Q7. By examining the distribution of the sample means, complete the following statement:

"For a sample size of 36, it is most likely that I will get a sample mean between ____ and ___."

Section B: Student Activity 2

Q1. By referring to the GeoGebra file "Distribution of Sample Means.ggb" complete the following table:

Sample size	σ	$\sigma_{ar{x}}$	Ratio of σ : $\sigma_{ar{x}}$ (to the nearest integer)
16			
25			
36	2.57	0.43	6
49			
64			
81			
100			
n			

Q2. Describe what is happening to the standard deviation of the population (σ) as the size of our 1000 samples increases.

Q3. Describe what is happening to the standard deviation of the sample means ($\sigma_{\bar{x}}$) as the size of our 1000 samples increases.

Q5. Do the graphs of the distributions back up this relationship? Explain.

Q6. Why does this relationship between $\sigma_{\bar{\chi}}$ and sample size exist?

Q7. For the given population ($\mu = 5.12, \sigma = 2.57$), a statistician takes 1000 samples of size 100. Write the corresponding values of σ , $\sigma_{\bar{x}}$ and σ : $\sigma_{\bar{x}}$ into the Table.

Q9. If, for the given population ($\mu = 5.12, \sigma = 2.57$), a statistician took 1000 samples of size 50, what would the value of $\sigma_{\bar{x}}$ be?

Section C: Student Activity 1

Q1. 10,000 samples of size 100 are to be chosen from our population of schoolbag weights ($\mu = 5.12$, $\sigma = 2.57$).

(a) What shape will the distribution of sample means be?

(b) Write down the value of the mean of the sample means $(\mu_{\bar{x}})$.

(c) Calculate the value of the standard deviation of the sample means ($\sigma_{\bar{x}}$).

(d) In the space below the population distribution, sketch the distribution of sample means. In doing so mark in the values for $\mu_{\bar{x}}$ and $\sigma_{\bar{x}}$. Use your information to complete the statements in parts (i) – (iii).

	(i)	68% of the sample means will have a value between &	Calculations & Rough Work
	(ii)	95% of the sample means will have a value between &	
	(iii)	99.7% of sample means will have a value between &	
0 1 2 3 4 5 6 7 8 9 10			

(e) What prior knowledge of statistics did you use to complete part (d)?

Q2. 10,000 samples of size 50 are to be chosen from our population of schoolbag weights ($\mu = 5.12$, $\sigma = 2.57$).

(a) What shape will the distribution of sample means be?

(b) Write down the value of the mean of the sample means $(\mu_{\vec{x}})$.

(c) Calculate the value of the standard deviation of the sample means($\sigma_{\bar{x}}$).

(d) In the space below the population distribution, sketch the distribution of sample means. In doing so mark in the values for $\mu_{\bar{x}}$ and $\sigma_{\bar{x}}$. Use your information to complete the statements in parts (i) – (iii).

 (i) 95% of the sample means will have a value between & (ii) Before I choose a random sample of size 50 from my population I can be 95% confident that its mean will be between & (iii) The 95% confident interval for my sample mean is ≤ x̄ ≤ 	Calculations & Rough Work

Q3. 10,000 samples of size 30 are to be chosen from our population of schoolbag weights ($\mu = 5.12$, $\sigma = 2.57$).

(a) What shape will the distribution of sample means be?

(b) Write down the value of the mean of the sample means ($\mu_{\bar{x}}$).

(c) Calculate the value of the standard deviation of the sample means($\sigma_{\vec{x}}$).

(d) In the space below the population distribution, sketch the distribution of sample means. In doing so mark in the values for $\mu_{\bar{x}}$ and $\sigma_{\bar{x}}$. Use your information to complete the statements in parts (i) – (iii).

	 (i) 95% of the sample means will have a value between & (ii) Before I choose a random sample of size 30 from my population I can be 95% confident that its mean will be between & (iii) The 95% confident interval for my sample mean is ≤ x̄ ≤ 	Calculations & Rough Work
0 1 2 3 4 5 6 7 8 9 10		

Q4. A population distribution is shown. The population has a mean of 3.97 ($\mu = 3.97$) and a standard deviation of 2.1 ($\sigma = 2.1$).

(a) What shape is the population distribution?

(b) You decide to take 1000 samples of size 50 from the population and histogram the sample means. What shape will the distribution of sample means be? Explain your reasoning.

(c) John also decides to take 1000 samples, this time of size 20, and histogram their sample means. Will John get a distribution of sample means which is normal? Explain your reasoning.

(d) Calculate the mean of your distribution of sample means.

 $\mu_{\bar{x}} =$

(e) Calculate the standard deviation of your distribution of sample means.

 $\sigma_{\bar{x}} =$

(f) In the space below the population distribution, sketch the distribution of sample means for a sample size of 50.

(g) I decide to choose a sample of size 50 from the population. Construct the 95% confidence interval for the mean of this sample.

The 95% C.I. for the mean of a sample of	Calculations & Rough work
SIZE 50 IS	
$\leq \bar{x} \leq$	

(h) Explain the meaning of the 95% confidence interval for your sample mean.

Section C: Student Activity 2

A5	Population Distribution	A6 Population Distribution	A7 Population Distribution	A8 Population Distribution
55 6	85 7 75 8 85 9 95 10 105 11 115 12 125 13 135 [°]	100 102 104 100 110 112 114 116 116 120 122 124 128 130 132 134 136 138 140 142 144 146 148 150		
B5 Dis	stribution of 1000 sample means	B6 Distribution of 1000 sample means	B7 Distribution of 1000 sample means	B8 Distribution of 1000 sample means
5.5	0 65 7 75 8 65 9 95 10 105 11 115 12 125 13 135 ³	100 102 104 100 100 110 112 114 118 119 120 122 124 128 130 132 134 136 138 140 142 144 146 148 150		12 14 15 18 20 22 24 28 28 30 32 34 98 38 40 42 44 48 48 50
C5		C6	C7	C8
	$\mu = 7.93 \ \sigma = 1.68$	$\mu = 123.9 \ \sigma = 17.9$	$\mu = 123.9 \ \sigma = 17.9$	$\mu = 30.3 \ \sigma = 4.94$
D5	$\mu_{\bar{x}} = 7.93 \ \sigma_{\bar{x}} = \frac{1.68}{\sqrt{30}}$	D6 $\mu_{\bar{x}} = 123.9 \sigma_{\bar{x}} = \frac{17.9}{\sqrt{50}}$	D7 $\mu_{\bar{x}} = 123.9 \sigma_{\bar{x}} = \frac{17.9}{\sqrt{10}}$	D8 $\mu_{\bar{x}} = 30.3 \ \sigma_{\bar{x}} = \frac{4.94}{\sqrt{10}}$
E5		E6	E7	E8
	$\mu_{\bar{x}} = 7.93 \ \sigma_{\bar{x}} = 0.31$	$\mu_{\bar{x}} = 123.9 \ \sigma_{\bar{x}} = 2.53$	$\mu_{\bar{x}} = 123.9 \ \sigma_{\bar{x}} = 5.67$	$\mu_{\bar{x}} = 30.3 \ \sigma_{\bar{x}} = 1.56$
F5		F6	F7	F8
	95% of \bar{x} values lie between	95% of \bar{x} values lie between	Cannot construct a 95% C.I. using z-scores	Even though sample size is small, because
	7.33 & 8.53	118.9 & 128.8	as distribution of sample means is not	population is normal can still construct a
G5		G6	G7	68
	n=30	n=50	n=10	n=10
H5		H6	H7	Н8
	95% of \bar{x} values lie between	95% of \bar{x} values lie between	Cannot construct a 95% C.I. using z-scores	95% of \bar{x} values lie between
	$7.93 \pm 1.96 \frac{1.68}{}$	$123.9 \pm 1.96 \frac{17.9}{}$	as distribution of sample means is not	$30.3 \pm 1.96 \frac{4.94}{}$
	$\sqrt{30}$	$\sqrt{50}$	normal.	$\sqrt{10}$

Section D: Student Activity 1

The Gaelic Players Association (GPA) is interested in finding out the typical length of time a club player spends training every week during the football/hurling season. In their research they ask a sample of 100 club players the total time they spent training the previous week. The results from the sample were as follows:

Mean time spent training: 7.2 hours
Standard deviation (s): 1.6 hours
Sample size: 100

The GPA make a statement about the mean amount of time spent training each week by all Gaelic club players in Ireland. What should this statement say?

Section E: Student Activity 1

Part (i)

An EU survey reports that the mean height of adult male Europeans is 181 cm with a standard deviation of 7 cm. An Irish newspaper carries out some research on this. They sample 100 adult Irish males and find that the mean of the sample is 179 cm. Based on this sample, are Irish males different in height to other Europeans?

Part (ii)

For each of the claims below state the null hypothesis and the alternative hypothesis.

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
A. The mean mark in maths				
for all Leaving Certificate				
candidates in 2014 was 385				
with a standard deviation of				
45. A survey of 50 leaving				
Cert. students in 2016 finds a				
mean mark of 396 in maths				
with a standard deviation of				
45. John suggests that maths				
results have not changed				
since 2014. Is he correct?				

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
B. The Irish Government				
published information on the				
earnings of the population in				
2012. This information states				
that, for people in full-time				
employment, the mean				
annual earnings are €39,400				
with a standard deviation of				
€12,920. In 2016, to see if the				
situation has changed, a				
research institute surveys				
1000 workers and finds that				
their mean annual income is				
€38,280. Has the mean annual				
income changed since 2012?				
C. A car-rental company uses				
Evertread tyres on their cars.				
Over a number of years the				
<i>tyres</i> have been shown to				
have lifespan which is				
normally distributed with a				
mean of 45 000 km and a				
standard deviation of 8000				
km. The rental company want				
to see if a new, cheaper				
brand of tyre – <i>Saferun tyres</i>				
– have as good a lifespan.				
They fit 25 of their cars with				
Saferun tyres and record their				
lifespan. For these cars they				
find a mean lifespan of				
43,850 km. Do <i>Saferun</i> tyres				
perform at the same level as				
Evertread tyres?				

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
D. A national newspaper				
reported in January 2010 that				
the mean rent for a 3-				
bedroom house in Ireland was				
€824 per month. A Dublin				
estate agent surveys 40 such				
properties in the greater				
Dublin area to see if the same				
was true there. The estate				
agent's sample had a mean				
rent of €1090 with a standard				
deviation of €480. The estate				
agent says that his survey				
shows that the mean rent in				
Dublin is not the same as the				
mean rent in the country as a				
whole. Is he correct?				
E. Milko Milk Powder is sold in				
packets with an advertised				
mean weight of 1.5 kg. The				
standard deviation is known				
to be 0.184 kg. A consumer				
group wishes to check the				
accuracy of the advertised				
mean and takes a sample of				
52 packets finding a mean				
weight of 1.49kgs. Are Milko				
Milk Powder correct with				
their advertised weight?				

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
F. In 2007, the EPA reports that				
the mean pH level in the river				
Barrow is 6.2 with a standard				
deviation of 0.9. A new chemical				
manufacturing company opens				
along the banks of the Barrow in				
2010. In 2016 the company				
releases a statement to				
highlight its "green credentials.				
The report states that its				
presence on the banks of the				
river Barrow has had no effect				
on the river's pH level. To				
support their claim they				
sampled the river water at 30				
different locations and found a				
mean pH level of 5.91. Are the				
company correct in their claim?				
G. Studies conducted in the				
1990s stated that the mean				
number of cigarettes used daily				
by smokers was 6.3 with a				
standard deviation of 1.7. The				
Irish Government claims that,				
following the introduction of				
the smoking ban, this has				
changed. To check this claim,				
GoodHealth magazine samples				
100 smokers and finds the mean				
number of cigarettes smoked				
daily by them is 5.8 with a				
standard deviation of 1.9. Is				
there evidence to support the				
government's claim?				
Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
------------------------------------	-----------------	------------------------	---------------------------------	------------
H. A World Health Organisation				
report says that Irish people				
have a mean life expectancy of				
78.3 years with a standard				
deviation of 5.7 years. The				
Donegal Echo newspaper				
commissions some research to				
see if people in Donegal have a				
different life expectancy. The				
ages of 1000 people from				
Donegal who died in 2015 are				
recorded and a mean age of				
78.6 years is calculated. Is there				
evidence to support the				
Donegal Echo's claim that				
Donegal people do not have the				
same life expectancy as the rest				
of the country?				
I. The 1911 Census reported				
that the mean number of				
people living in a house in				
Ireland was 8.4 with a standard				
deviation of 2.6. As part of the				
1916 celebrations, the property				
website Duft.ie survey 50				
households to see if this				
situation has changed. Their				
sample returns a mean of 6.9				
people. Is there evidence to				
support the claim that the				
number of people living in a				
house in Ireland has changed?				

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
J. It is known that when taking a				
commonly used pain				
medication, patients usually				
report that their pain is reduced				
by a mean of 3.5 points on the				
pain scale. We are testing a new				
pain medication in a sample of				
22 patients and don't know				
whether this new medication				
works better or worse, but in				
this sample, we find a mean				
pain reduction of 4.2 points,				
with a standard deviation of 1.3				
points. Does the new drug				
perform differently to				
commonly-used pain				
medication?				

Section E: Student Activity 2

An EU survey reports that the mean height of adult male Europeans is 181 cm with a standard deviation of 7 cm. An Irish newspaper carries out some research on this. They sample 100 adult Irish males and find that the mean of the sample is 178.9 cm. Based on this sample, are Irish males different in height to other Europeans (you may use a significance level of 5%)?

1. On the grid below, sketch the distribution of sample means for samples of size 100 drawn from a population with a mean of 181 cm and a standard deviation of 7 cm.

2. If the population distribution is as claimed by the EU survey, how likely is it to get a mean of 178.9 cm from a sample of size 100? Explain your reasoning.

3. Use z-tables to calculate the probability of getting a value of 178.9 cm or less, given the hypothesised distribution.

Sketch	Calculation

Mean & Stand	ard Deviation
	1:COMP 2:STAT 3:TABLE 4:VERIF
	1:1-VAR 2:A+BX 3:_+CX2 4:1n X 5:€^X 6:A•B^X 7:A•X^B 8:1/X
After each number is entered press 🖃	
Now that the data is entered Note : This does not clear the	press AC to begin analysis. data.
3 Mean: SHFT 1 4 2 =	1:Type 2:Data 3:Sum 4:Var 5:MinMax
4 Standard Deviation press AC SHFT 1 4 4 =	1:n 2:코 3:0x 4:sx

Appendix C: Solutions to **Section E**: Student Activity 1 Part (ii)

Claim	Null Hypothesis	Alternative Hypothesis	Sketch & Calculation of p-value	Conclusion
A. The mean mark in maths for all Leaving Certificate candidates in 2014 was 385 with a standard deviation of 45. A survey of 50 leaving Cert. students in 2016 finds a mean mark of 396 in maths with a standard deviation of 45. John suggests that maths results have not changed since	$H_{0:}$ The mean mark in maths for all LC candidates in 2016 is 385. H_{0} : $\mu = 385$	$H_{A:}$ The mean mark in maths for all LC candidates in 2016 is not 385. $H_A: \mu \neq 385$	365 370 375 380 385 390 395 400 405 7 = 1 7285	I fail to reject the null hypothesis. It is reasonable to claim that the mean mark in maths for all LC candidates in 2016 is 385.
2014. Is ne correct?			p = 0.0839	
B. The Irish Government published information on the earnings of the population in 2012. This information states that, for people in full-time employment, the mean annual earnings are €39,400 with a standard deviation of €12,920. In 2016, to see if the situation has changed, a research institute surveys 1000 workers and finds that their mean annual income is €38,280. Has the mean annual income changed since 2012?	$H_{0:}$ The mean earnings for people in full-time employment in 2016 is €39,400. $H_{0}: \mu = €39,400$	$H_{A:}$ The mean earnings for people in full-time employment in 2016 is not €39,400. $H_A: \mu \neq €39,400$	z = -2.937 p = 0.003	I reject the null hypothesis in favour of the alternative hypothesis. It is not correct to claim that the mean earnings for the full-time employed in 2016 is €39,400.

C. A car-rental company uses	$H_{0:}$ The mean lifespan	$H_{A:}$ The mean lifespan of	\frown	I fail to reject the null hypothesis. It is
Evertread tyres on their cars.	of Saferun tyres is	Saferun tyres is not		fair to claim that the mean lifetime of
Over a number of years the tyres	45,000 km.	45,000 km.		Saferun tyres is 45,000 km.
have been shown to have lifespan				
which is normally distributed with	$H_0: \mu = 45,000 \ km$	$H_{4}: \mu \neq 45,000 \ km$		
a mean of 45 000 km and a				
standard deviation of 8000 km.			540 200 541 800 542 400 545 000 546 500 548 200 540 800	
The rental company want to see if				
a new, cheaper brand of tyre –			z = -0.71875	
Saferun tyres – have as good a			p = 0.4723	
lifespan. They fit 25 of their cars				
with Saferun tyres and record				
their lifespan. For these cars they			Note: Sample size is smaller than 30 but we	
find a mean lifespan of 43,850			can still assume that the distribution of	
km. Do <i>Saferun</i> tyres perform at			sample means is normal because we are told	
the same level as Evertread tyres?			that the population is normal.	
D. A national newspaper reported	H_{0} . The mean rent for	H_{A} . The mean rent for a		I reject the null hypothesis in favour of
in January 2010 that the mean	a 3-bedroom house in	3-bedroom house in the	\frown	the alternative. It is not fair to claim
rent for a 3-bedroom house in	the greater Dublin	greater Dublin area is not		that the mean rent for a 3-bedroom
Ireland was €824 per month. A	area is €824.	€824.		house in the greater Dublin area is
Dublin estate agent surveys 40				€824.
such properties in the greater	$H_0: \mu = \in 824$	<i>H</i> ₄ : <i>µ</i> ≠ €824		
Dublin area to see if the same				
was true there. The estate agent's	i l		50 600 650 700 750 800 850 900 950 1000105011	
sample had a mean rent of €1090			z — 3 505	
with a standard deviation of			n = 0.0005 (=0)	
€480. The estate agent says that				
his survey shows that the mean				
rent in Dublin is not the same as				
the mean rent in the country as a				
whole. Is he correct?				

E. Milko Milk Powder is sold in	H_{0} : The weight of	$H_{A:}$ The weight of Milko		I fail to reject the null hypothesis. It is
packets with an advertised mean	Milko Milk Powder	Milk Powder packets is		fair to claim that the mean weight of
weight of 1.5 kg. The standard	packets is 1.5 kg.	not 1.5 kg.		Milko Milk Powder packets is 1.5 kg.
deviation is known to be 0.184 kg.				
A consumer group wishes to	$H_0: \mu = 1.5 \ kg$	$H_A: \mu \neq 1.5 \ kg$		
check the accuracy of the				
advertised mean and takes a				
sample of 52 packets finding a				
mean weight of 1.49kgs. Are			1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58	
Milko Milk Powder correct with			z = -0.392	
their advertised weight?			p = 0.695	
F. In 2007, the EPA reports that	H_{0} : The mean pH level	H_{A_1} The mean pH level in		I fail to reject the null hypothesis. It is
the mean pH level in the river	in the river Barrow in	the river Barrow in 2016	\frown	fair to claim that the mean pH level in
Barrow is 6.2 with a standard	2016 is 6.2.	is not 6.2.		the river Barrow in 2016 is 6.2.
deviation of 0.9. A new chemical				
manufacturing company opens	$H_0: \mu = 6.2$	$H_A: \mu \neq 6.2$		
along the banks of the Barrow in		21 1		
2010. In 2016 the company				
releases a statement to highlight				
its "green credentials". Part of the			5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	
report states that its presence on			z = -1.765	
the banks of the river Barrow has			p = 0.078	
had no effect on the river's pH				
level. To support their claim they				
sampled the river water at 30				
different locations and found a				
mean pH level of 5.91. Are the				
company correct in their claim?				

G. Studies conducted in the 1990s	$H_{0:}$ The mean number	$H_{A:}$ The mean number of		I reject the null hypothesis in favour of
stated that the mean number of	of cigarettes smoked	cigarettes smoked daily in		the alternative. It is unfair to claim that
cigarettes used daily by smokers	daily in Ireland	Ireland following the		the mean number of cigarettes smoked
was 6.3 with a standard deviation	following the smoking	smoking ban is not 6.3.		daily in Ireland since the smoking ban is
of 1.7. The Irish Government	ban is 6.3.			6.3.
claims that, following the		$H_A: \mu \neq 6.3$		
introduction of the smoking ban,	$H_0: \mu = 6.3$	21 ·		
this has changed. To check this			5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	
claim, GoodHealth magazine			z = -2.941	
samples 100 smokers and finds			p = 0.003	
that the mean number of				
cigarettes smoked daily by them				
is 5.8 with a standard deviation of				
1.9. Is there evidence to support				
the government's claim?				
H. A World Health Organisation	$H_{0:}$ The mean life	$H_{A:}$ The mean life		I fail to reject the null hypothesis. It is
report says that Irish people have	expectancy of Donegal	expectancy of Donegal	\frown	fair to claim that the mean life
a mean life expectancy of 78.3	people is 78.3 years.	people is not 78.3 years.		expectancy of Donegal people is 78.3
years with a standard deviation of				years.
5.7 years. The Donegal Echo	$H_0: \mu = 78.3$	$H_A: \mu \neq 78.3$		
newspaper commissions some				
research to see if people in				
Donegal have a different life			77 8 78 78 2 78 4 78 6 78 8	
expectancy. The ages of 1000				
people from Donegal who died in			2 - 1.004 n - 0.006	
2015 are recorded and a mean			p = 0.090	
age of 78.6 years is calculated. Is				
there evidence to support the				
Donegal Echo's claim that				
Donegal people do not have the				
same life expectancy as the rest				
of the country?				

I. The 1911 Census reported that	$H_{0:}$ The mean number	$H_{A:}$ The mean number of		I reject the null hypothesis in favour of
the mean number of people living	of people living in a	people living in a house in		the alternative. It is not fair to claim
in a house in Ireland was 8.4 with	house in Ireland in	Ireland in 2016 is not 8.4.		that the mean number of people living
a standard deviation of 2.6. As	2016 is 8.4.			in a house in Ireland in 2016 is 8.4.
part of the 1916 celebrations, the		$H_A: \mu \neq 8.4$		
property website Duft.ie survey	$H_0: \mu = 8.4$			
50 households to see if this			3 7.2 7.6 8 8.4 8.8 9.2 9.6	
situation has changed. Their			z = -4.079	
sample returns a mean of 6.9			p = 0	
people. Is there evidence to				
support the claim that the				
number of people living in a				
house in Ireland has changed?				
J. It is known that when taking a	$H_{0:}$ The mean	$H_{A:}$ The mean reduction	Cannot carry out a z-test as we cannot	Cannot make a conclusion with given
commonly used pain medication,	reduction in pain level	in pain level by patients	guarantee that the distribution of sample	data.
patients usually report that their	by patients using the	using the new medication	means is normal – due to small sample size	
pain is reduced by a mean of 3.5	new medication is 3.5	is not 3.5 points.	(n<30) and not knowing if population is	
points on the pain scale. We are	points.		normally distributed.	
testing a new pain medication in		$H_A: \mu \neq 3.5$		
a sample of 22 patients and don't	$H_0: \mu = 3.5$			
know whether this new				
medication works better or				
worse, but in this sample, we find				
a mean pain reduction of 4.2				
points, with a standard deviation				
of 1.3 points. Does the new drug				
perform differently to commonly-				

Appendix D: Schoolbag Weights for Printing

The values below represent a population of 200 schoolbag weights and are to be used to allow students experience sampling during **Section A** of this Teaching and Learning plan.

To prepare for the sampling activity you need to:

- 1. Print out the weights below on A4 sticker sheets and stick each one onto a piece of card.
- 2. Shuffle the cards and place them into some container (a bag, a box) ready for sampling.

To save time during the lesson, you might want to prepare a few sets of weights so that several groups of students can carry out sampling simultaneously.

0.1	1	1.6	2	3
0.1	1	1.7	2	3
0.5	1	1.9	2	3
0.5	1.1	2	2 34	3
0.5	1.1	2 ²⁵	2.5	3
0.6	1.2	2 26	2.5	3
0.8	1.3	2 27	2.5	3
1	1.5	2 28	2.5	3
1 9	1.5	2 29	2.6	3
1	1.5	2 30	3	3

3.9	4	4	5	91
4	4	4.1	5	92
4	4	4.1	5	93
4	4	4.5	5	94
4	4	4.6	5	95
4	4	4.7	5	96
4	4	4.8	5 87	97
4	4	4.9	5	98
4	4	5	5	99
4	4	5	5 90	100
	3.9 51 4 52 4 53 4 54 4 55 4 55 4 55 4 55 4 55	3.9 4 51 61 4 61 52 62 62 4 52 62 4 63 53 63 4 64 54 64 55 65 66 4 66 4 67 4 68 4 69 4 69 4 60 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5	5.5	6	6	6.6	
	101	111	121	131	141
5	5.5	6	6	6.7	
	102	112	122	132	142
5	5.5	6	6.1	6.7	
_	103	113	123	133	143
5	5.6	6	6.2	6.8	
0	104	114	124	134	144
5	56	6	6.2	6.8	
5	105	115	125	135	145
5 1	57	6	6 5	6 9	
J. I	106	116	126	136	146
г 1	го	C		C 0	
5. 1	5. ð	117	127	D.9	147
		_		_	
5.2	5.9	6	6.5	7	
	108	118	128	138	148
5.3	5.9	6	6.5	7	
	109	119	129	139	149
5.4	6	6	6.6	7	
	110	120	130	140	150

7	7.	9 8	9	9.5	191
7	7.	9 8	9	9.5	102
7	8	8	9	9.5	192
7	153	¹⁶³ 8.	¹⁷³ 9	¹⁸³ 9.7	193
7	154	¹⁶⁴ 8.	¹⁷⁴ 9	¹⁸⁴ 9.7	194
7.1	155	¹⁶⁵ 8.	¹⁷⁵ 9	¹⁸⁵ 9.9	195
7.4	156	¹⁶⁶ 8.	¹⁷⁶ 9	¹⁸⁶ 9.9	196
7.5	157	¹⁶⁷ 8.	¹⁷⁷ 9 9.2	¹⁸⁷ 9.9	197
78	158	168 Q	178 Q 2	188 Q Q Q	198
7.0	159	, J 169	179	189 189	199
1.0	160	170	180	+ J.J	200