
Senior Cycle

Contents		Pa	ge	
Introduction			3	
Section 1	Strand 3	Number systems	11	
Section 2	Strand 5	Functions	17	
Section 3	Strand 4	Algebra	19	
Section 4	Strand 3	Area and Volume	24	
Section 5	Strand 2	Trigonometry	25	
Section 6	Strand 2	Co-ordinate Geometry (Line)	30	
Section 7	Strand 2	Synthetic Geometry 1	34	
Section 8	Strand 1	Probability and Statistics 1	51	
Section 9	Strand 5	Functions & Calculus	58	
Section 10	Strand 1	Probability & Statistics 2	63	
Section 11	Strand 2	Synthetic Geometry 2	71	
Section 12	Strand 2	Co-ordinate Geometry (Circle)	76	
Section 13	Strand 3	Financial Maths	77	
Section 14	Strand 3	Proof by induction	78	
Section 15	Strand 3&4	Complex numbers	79	
Appendix A	Geometry: Thinking	g at Different Levels: The Van Hiele	Theory	
Appendix B	Guide to Theorems,	Axioms and Constructions at all I	Levels	
Appendix C	Investigations of quadrilaterals and triangles			
Appendix D	How to use CensusAtSchool			
Appendix E	Trigonometric formulae			
Appendix F	Sample derivations of some trigonometric formulae			

Introduction

Student Learning

While this is a handbook for teachers, it must be emphasised that <u>student learning</u> and the process of <u>mathematical thinking</u> and <u>building understanding</u> are the main focus of this document.

Information and Communications Technologies are used whenever and wherever appropriate to help to support student learning. In this document the symbol appears at the corresponding position of the content to indicate that an interactive IT module is available on the Project Maths Student's CD.

Students with mild general learning disabilities

Teachers are reminded that the NCCA Guidelines on mathematics for students with mild general learning disabilities can be accessed at

http://www.ncca.ie/uploadedfiles/PP_Maths.pdf

This document includes

- ❖ Approaches and Methodologies (from Page 4)
- **\Delta** Exemplars (from page 20).

Note on Strand 2 Synthetic Geometry (see Leaving Certificate syllabus):

"In the examination, candidates will have the option of answering a question on the synthetic geometry set out here, or answering a problem- solving question based on the geometrical results from the corresponding syllabus level at Junior Certificate. This option will apply for a three year period only, for candidates sitting the Leaving Certificate in 2012, 2013 and 2014. There will be no choice after that period."

Note on timeline for examinations for national roll-out:

Strands 1 and 2 will be examined the first time in the Junior Certificate Mathematics Examination of 2013 and the Leaving Certificate Mathematics Examination of 2012.

Strands 1, 2, 3 and 4 will be examined in the Junior Certificate Mathematics Examination in 2014 and the Leaving Certificate Mathematics Examination in 2013.

Strands 1, 2, 3, 4 and 5 will be examined in the Junior Certificate Mathematics Examination in 2015 and Leaving Certificate Mathematics Examination in 2014.

Note: Synthesis and problem solving listed below must be incorporated into all of the Strands.

The list of skills below is taken from Strand 1of the syllabus but, an identical list is given at the end of each Strand, in the syllabus.

Students learn about	Students should be able to			
1.8 Synthesis	- explore patterns and formulate conjectures			
and problem-	– explain findings			
solving skills	- justify conclusions			
	- communicate mathematics verbally and in written form			
	- apply their knowledge and skills to solve problems in familiar and unfamiliar contexts			
	- analyse information presented verbally and translate it into mathematical form			
	- devise, select and use appropriate mathematical models, formulae or techniques to process			
	information and to draw relevant conclusions.			

Colour coding used in the suggested sequence below:

Strand 1 Statistics and probability	Strand 2 Synthetic, coordinate& transformation geometry & trigonometry	Strand 3 Number	Strand 4 Algebra	Strand 5 Functions

^{*} Indicates proof of this theorem is required for JCHL

^{**} Indicates proof of this theorem is required for LCHL

Suggested Sequence of topics -

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
Section 1	3.1	LCHL.1	Number systems	4	4
	3.2	LCHL.2	Rules for indices and scientific notation	3	7
	3.2	LCHL.3	Logarithms	4	11
	3,4&5	LCHL.4	Relations approach to algebra - revision and extension of JC material	5	16
	3.1	LCHL.5	Arithmetic and geometric sequences and series	6	22
Section 2	5.1	LCHL.6	Functions- interpreting and representing linear, quadratic and exponential functions in graphical form	8	30
	5.1	LCHL.7	Composition of functions	2	32
Section 3	4.1	LCHL.8	Revision of JC algebraic expressions and extension to LCHL	5	37
	4.1	LCHL.9	Rearranging formulae	2	39

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
	4.2	LCHL.10	Solving equations and the <i>Factor Theorem</i>	10	49
	4.3	LCHL.11	Inequalities - linear, quadratic, rational	5	54
	4.3	LCHL.12	Modulus inequalities	3	57
Section 4	3.4	LCHL.13	Nets, length, area and volume	5	62
Section 5	2.3	LCHL.14	Revision of JC trigonometry and radian measure	4	66
	2.3	LCHL.15	The unit circle and graphs of trigonometric functions	10	76
	2.3	LCHL.16	Area of a triangle, sine rule and cosine rule	6	82
	2.3	LCHL.17	3D trigonometry	3	85
	2.3	LCHL.18	Trigonometry formulae and proofs	5	90
Section 6	2.2	LCHL.19	Revision of JC coordinate geometry	2	92
	2.2	LCHL.20	Area of a triangle given the coordinates of the vertices	2	94
	2.2	LCHL.21	Divide a line segment internally in the ratio <i>m</i> : <i>n</i>	2	96
	2.2	LCHL.22	The perpendicular distance from a point	2	98

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
			to a line		
	2.2	LCHL.23	Angle between two lines	2	100
Section 7	2.1	LCHL.24	Revision - Plane and points, Axioms 1,2, 3,&5, Theorem 1, Constructions 8,9,5,	1	101
	2.1	LCHL.25	Revision - Constructions 6,7,10,11,12 Axiom 4, Theorem 2	1	102
	2.1	LCHL.26	Revision: Theorems 3, *4,5,*6, 7 & 8	1	103
	2.1	LCHL.27	Revision: Constructions 1,2, 3& 4	1	104
	2.1	LCHL.28	Revision: JC Transformation geometry	1	105
	2.1	LCHL.29	Revision: quadrilaterals, parallelograms, Theorems *9 & 10, Corollary 1, Construction 20	1	106
	2.1	LCHL.30	Revision: More on quadrilaterals	1	107
	2.1	LCHL.31	**Theorem 11	1	108

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
	2.1	LCHL.32	Theorem **12 and Theorem **13	2	110
	2.1	LCHL.33	Constructions 13,14,& 15, Theorems *14 & 15: Pythagoras' Theorem & converse, Proposition 9	2	112
	2.1	LCHL.34	Introduction to area, Theorem 16,Definition 38, Theorems 17&18	1	113
	2.4	LCHL.35	Enlargements	3	116
Section 8	1.1	LCHL.36	Fundamental Principle of Counting, arrangements, combinations	4	120
	1.2&1.3	LCHL.37	Concepts of Probability	5	125
	1.2&1.3	LCHL.38	Rules of probability	3	128
	1.2&1.3	LCHL.39	Use of tree diagrams, set theory and counting method in probability	4	132
	1.4 &1.5	LCHL.40	Data handling cycle	5	137
	1.6 & 1.7	LCHL.41	Analysing data graphically and numerically, interpreting and drawing inferences from data	8	145

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
	Pro	oposed beginn	ning of 6 th year program	me	
Section 9		LCHL.42	Revision of functions from 5 th year and relations without formulae (listed on JC syllabus 4.5)	4	149
	5.2	LCHL.43	Concept of a limit, Limits as $n \to \infty$, recurring decimals, sum to infinity	4	153
	5.2	LCHL.44	Differential Calculus	14	167
	5.2	LCHL.45	Integral Calculus	10	177
Section 10	1.1	LCHL.46	Revision of counting and probability concepts from 5 th year	4	181
	1.2	LCHL.47	Conditional probability	5	186
	1.3	LCHL.48	Bernoulli trials	3	189
	1.2	LCHL.49	Expected value	4	193
	1.1, 1.2,	LCHL.50	Overview of probability concepts	2	195
	1.4 &1.5	LCHL.51	Revision of statistics concepts from 5 th year	5	200
	1.6	LCHL.52	Bivariate data, scatter plots and correlation	5	205

Section number	Strand	Lesson Idea	Title of lesson idea	Suggested number of class periods	Cumulative totals
	1.3	LCHL.53	Normal distribution and standard normal	4	209
	1.7	LCHL.54	Drawing inferences from data	4	213
Section 11	2.1	LCHL.55	Theorem *19, Corollaries 2,3,4,&5	1	214
	2.1	LCHL.56	Theorem 20, Corollary 6 & Construction 19	1	215
	2.1	LCHL.57	Theorem 21 and Construction 18	2	217
	2.1	LCHL.58	Constructions 16 & 17	2	219
	2.1	LCHL.59	Construction 21&22	1	220
Section 12	2.2	LCHL.60	Coordinate geometry of the circle	8	228
Section 13	3.1	LCHL.61	Financial Maths	10	238
Section 14	3.1	LCHL.62	Proof by Induction	2	240
Section 15	3.1	LCHL.63	Complex numbers 1	6	246
	4.4	LCHL.64	Complex numbers 2	8	254

The Lesson Ideas

Section 1 Strand 3

Lesson Idea LCHL.1

Four class periods

Title

Number systems

Resources

Student's CD

Content

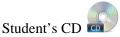
These lessons will involve the students in investigating and understanding:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and representing these numbers on a number line
- Factors, multiples and prime numbers in \mathbb{N}
- How to express numbers in terms of their prime factors
- Highest Common Factor and Lowest Common Multiple
- · How to make and justify estimates and approximations of calculations
- How to make estimates of the world around them e.g. how many books in a library
- How to calculate percentage error and tolerance
- How to calculate accumulated error (due to addition or subtraction only)
- Terminating and non-terminating decimals
- Irrational numbers $\mathbb{R} \setminus \mathbb{Q}$
- The number system \mathbb{R} , appreciating that $\mathbb{R} \neq \mathbb{Q}$ and representing \mathbb{R} on a number line
- How to geometrically construct $\sqrt{2}$ and $\sqrt{3}$
- Proof by contradiction¹ that $\sqrt{2}$ is an irrational number

¹Note: Students need to know the concept of proof by contradiction, not necessarily any particular proof. This one suggested above could serve as an example of such a proof.

Useful websites

www.projectmaths.ie


http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

Three class periods

Title

Rules for indices and scientific notation

Resources

Content

These lessons will involve the students in investigating and understanding:

• The rules for indices (where $a, b \in \mathbb{R}$, $p, q \in \mathbb{Q}$; $a^p, a^q \in \mathbb{Q}$)

$$a^{p}a^{q} = a^{p+q}$$

$$\frac{a^{p}}{a^{q}} = a^{p-q}$$

$$a^{0} = 1$$

$$(a^{p})^{q} = a^{pq}$$

$$a^{-p} = \frac{1}{a^{p}}$$

$$(ab)^{p} = a^{p}b^{p}$$

$$(\frac{a}{b})^{p} = \frac{a^{p}}{b^{p}}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}, \quad n \in \mathbb{Z}, n \neq 0, a > 0$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}, \quad n \in \mathbb{Z}, n \neq 0, a > 0$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}}, \quad m, n \in \mathbb{Z}, n \neq 0, a > 0$$

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m}, \quad m, n \in \mathbb{Z}, n \neq 0, a > 0$$

- How to express non-zero positive rational numbers in the form $a \times 10^n$, where $n \in \mathbb{Z}$ and $1 \le a < 10$
- How to perform arithmetic operations on numbers in scientific notation

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Four class periods

Title

Logarithms

Resources

Student's CD

Content

These lessons will involve the students in investigating and understanding:

• How to solve problems using the rules of logarithms:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

$$\log_a(x)^q = q\log_a(x)$$

$$\log_a(a) = 1$$

$$\log_a(1) = 0$$

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Five class periods

Title

Relations approach to algebra- revision and extension of Junior Cycle material

Resources

Teaching and Learning Plan:

Introduction to Patterns

Patterns: A Relations Approach to Algebra

Workshop 4 booklet

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- That processes can generate sequences of numbers or objects
- How to investigate and discover patterns among these sequences
- How to use patterns to continue the sequence
- How to develop generalising strategies and ideas, present and interpret solutions, in the following:
 - o The use of tables, diagrams, graphs and formulae as tools for representing and analysing **linear** patterns and relations
 - Discuss rate of change and the y intercept. Consider how these relate to the context from which the relationship is derived and identify how they can appear in a table, in a graph and in a formula
 - Decide if two linear relations have a common value. (Decide if two lines intersect and where the intersection occurs.)
 - Recognise that the distinguishing feature of a linear relationship is a constant rate of change
 - Recognise linear relationships as arithmetic sequences
 - o The use of tables, diagrams, graphs and formulae as tools for representing and analysing **quadratic** patterns and relations
 - Recognise that a distinguishing feature of quadratic relations is that the rate of change of the rate of change is constant

- The concept of a function as a relationship between a set of inputs and a set of outputs where each input is related uniquely to just one output
- o **Exponential** relations
 - Recognise that a distinguishing feature of exponential relations is a constant ratio between successive outputs

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

Lesson Idea LCHL.5

Six class periods

Title

Arithmetic and geometric sequences and series

Resources

Teaching and Learning Plan:

Arithmetic sequences and series

Introduction to Patterns

Patterns: A Relations Approach to Algebra

Workshop 4 booklet

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- The link between linear relations and the formula for the general term (T_n) of an arithmetic sequence
- How to find the sum (S_n) of *n* terms of an arithmetic series
- How to apply the formula for the *n*th term of an arithmetic sequence and the formula for the sum to *n* terms of an arithmetic series to different contexts.

- Geometric sequences and series
- Recognise exponential relationships as geometric sequences
- Recognise whether a sequence is arithmetic, geometric or neither

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 2 Strand 5

Lesson Idea LCHL.6

Eight class periods

Title

Functions -interpreting and representing linear, quadratic and exponential functions in graphical form

Resources

Patterns: A Relations Approach to Algebra

Dynamic software package

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- That a function assigns a unique output to a given input
- Domain, co -domain and range
- How to recognise surjective, injective, and bijective functions
- How to find the inverse of a bijective function and understanding that it is a function
- Make use of function notation f(x) = f(x) + f(x
- How to graph functions of the form:
 - o ax where $a \in \mathbb{Q}, x \in \mathbb{R}$
 - o ax + b where $a, b \in \mathbb{Q}, x \in \mathbb{R}$
 - o $ax^2 + bx + c$, where $a, b, c \in \mathbb{Q}, x \in \mathbb{R}$
 - o $ax^3 + bx^2 + cx + d$, where $a, b, c, d \in \mathbb{Z}, x \in \mathbb{R}$
 - o ab^x where $a, b \in \mathbb{R}$
 - o Logarithmic
 - o Exponential
- The concept of the limit of a function where it arises
- How to interpret equations of the form f(x) = g(x) as a comparison of the above functions
- How to sketch the graph of the inverse of a function given the function
- Use graphical methods to find approximate solutions to
 - $\circ \quad f(x) = 0$
 - \circ f(x) = k

$$f(x) = g(x)$$
where $f(x)$ and $g(x)$ are of the above form

- Express quadratic functions in complete square form
- The relationship between x^2 , ax^2 , $x^2 + c$, $(x-h)^2 + k$, and $a(x-h)^2 + k$
- How to use the complete square form of a quadratic function to find the roots and turning points
- How to use the complete square form of a quadratic function to sketch the function

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.7

Two class periods

Title

Composition of functions

Resources

Student's CD

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

• The composition of functions (including the notation used)

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 3 Strand 5

Lesson Idea LCHL.8

Five class periods

Title

Revision of JC algebraic expressions and extension to HL LC

Resources

Content

These lessons will involve the students in investigating and understanding:

- Factorising as listed on the JCHL syllabus
- The addition of expressions such as:

$$\frac{ax+b}{c} \pm ... \pm \frac{dx+e}{f} \text{ where } a,b,c,d,e,f \in \mathbb{Z}$$

$$\frac{a}{bx+c} \pm \frac{q}{px+r}$$
 where $a,b,c,p,q,r \in \mathbb{Z}$

 How to perform the arithmetic operations of addition, subtraction, multiplication and division on polynomials and rational algebraic expressions paying attention to the use of brackets and surds

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Two class periods

Title

Rearranging formulae

Resources

Content

These lessons will involve the students in investigating and understanding:

• How to rearrange formulae

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.10

Ten class periods

Title

Solving equations and the Factor Theorem

Resources

Teaching and Learning Plan:

Equations

NCCA Assessment material Set A for project schools (September 2010)

Dynamic software package

Student's CD

Content

These lessons will involve the students in investigating and understanding:

• The selection and use of suitable strategies (graphic, numerical, algebraic and mental) for finding solutions to equations of the form:

o
$$f(x) = g(x)$$
, with $f(x) = ax + b$, $g(x) = cx + d$ and where $a, b, c, d \in \mathbb{Q}$

o
$$f(x) = g(x)$$
 with $f(x) = \frac{a}{bx+c} \pm \frac{p}{qx+r}$, $g(x) = \frac{e}{f}$ where $a, b, c, e, f, p, q, r \in \mathbb{Z}$

o
$$f(x) = g(x)$$
 with $f(x) = \frac{ax+b}{ex+f} \pm \frac{cx+d}{px+q}$, $g(x) = k$ where $a, b, c, d, e, f, p, q \in \mathbb{Z}$

o
$$f(x) = k$$
 with $f(x) = ax^2 + bx + c$ (and not necessarily factorisable), $a, b, c \in \mathbb{Q}$

- o Simultaneous linear equations with two unknowns and interpret the results
- One linear and one equation of order two with two unknowns and interpret the results
- o Simultaneous linear equations with three unknowns

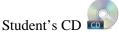
and interpret the results

- How to use the Factor Theorem for polynomials
- The selection and use of suitable strategies (graphic, numerical, algebraic and mental) for finding solutions to cubic equations with at least one integer root and interpret the results
- How to form polynomial equations given the roots
- How to sketch polynomials given the polynomial in the form of linear factors some of which may be repeated

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/


Five class periods

Title

Inequalities - linear, quadratic and rational

Resources

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

Selecting and using of suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form:

$$g(x) \le k$$
, $g(x) \ge k$
 $g(x) < k$, $g(x) > k$ where
 $g(x) = ax + b$ or
 $g(x) = ax^2 + bx + c$ or
 $g(x) = \frac{ax + b}{cx + d}$, $a, b, c, d, k \in \mathbb{Q}$, $x \in \mathbb{R}$

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Three class periods

Title

Modulus inequalities

Resources

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- Use notation |x|
- How to select and use suitable strategies (graphic, numeric, algebraic, mental) for finding solutions to inequalities of the form: |x-a| < b, |x-a| > b and combinations of these, where $a,b \in \mathbb{Q}, x \in \mathbb{R}$

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

Section 4 Nets, Length, Area and Volume

Lesson Idea LCHL.13

Five class periods

Title

Nets, length, area and volume

Resources

A mathematical instruments set

Content

These lessons will involve the students in investigating and understanding:

- How to solve problems involving the length of the perimeter and the area of a disc, triangle, rectangle, square, parallelogram, trapezium, sectors of discs and figures made from combinations of these
- The nets of prisms (polygonal bases), cylinders and cones
- How to solve problems involving the surface area of a rectangular block, cylinder, right cone, triangular based prism (right angle, isosceles and equilateral), sphere, hemisphere and solids made from combinations of these
- How to use the trapezoidal rule to approximate area
- How to calculate percentage error involved in using trapezoidal rule for area in, for example, the circle

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

Section 5 Trigonometry

Lesson Idea LCHL.14

Four class periods

Title

Revision of JC Trigonometry with extension to LC HL (radian measure)

Resources

Teaching and Learning Plans:

Plan 8: Introduction to Trigonometry

Radian Measure

Dynamic software package

Classroom model or visual aid for the theorem of Pythagoras

Set of board drawing instruments

Clinometers

Formulae and Tables Booklet

Content

These lessons will involve the students in investigating and understanding:

- The use of Pythagoras' Theorem in right-angled triangles
- Trigonometric ratios in a right-angled triangle
- The use of the ratios to solve problems involving right angled triangles
- The use of similar triangles to find unknowns in right-angled triangles
- The use of the clinometer
- How to work with trigonometric ratios in surd form and solve problems involving surds
- How to manipulate measure of angles in both decimal and DMS forms
- The use of radians as a unit of measurement of angles
- The area of sectors and arc length using degrees and radians

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Ten class periods

Title

The unit circle and graphs of trigonometric functions

Resources

Teaching and Learning Plans 9&10:

The Unit Circle

Trigonometric graphs

Dynamic software package

Graph paper, mathematical set, set of board drawing instruments

"Ferris wheel" on Student's CD, Formulae and Tables Booklet

Content

These lessons will involve the students in investigating and understanding:

- The properties and uses of the unit circle
- Radian and degree metrics of the unit circle
- The trigonometric ratios for angles in each of the four quadrants
- Graphs of the trigonometric functions : $\sin x$, $\cos x$, $\tan x$
- The period and range of these trigonometric functions
- That the inverse of these trigonometric functions is not a function for all values of x •
- Graphs of trigonometric functions of the type $a \sin(n\theta)$, $a \cos(n\theta)$ for $a, n \in \mathbb{N}$
- The period and range of the above trigonometric functions and the effect of changing the values of a and n
- Solutions of equations of the form $\sin \theta = 0$ and $\cos \theta = \pm \frac{1}{2}$ giving all solutions for specified values of θ
- Solutions to trigonometric equations such as $\sin n\theta = 0$ and $\cos n\theta = \pm \frac{1}{2}$ giving all solutions for specified values of θ
- Solutions of equations of the type $a \sin(bx) = \frac{1}{2}$, $a \cos(bx) = \frac{1}{2}$ for the domain used in the graph
- Solve equations for example of the form $15\cos^2 x = 13 + \sin x$ for all values of x where $0^{\circ} \le x \le 360^{\circ}$.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.16

Six class periods

Title

Area of triangle, sine rule & cosine rule

Resources

Dynamic geometry software package

Graph paper, mathematical set, set of board drawing instruments

Clinometers

Formulae and Tables Booklet

Content

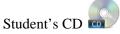
These lessons will involve the students in investigating and understanding:

- The area of a triangle using Area = $\frac{1}{2}$ ab sin C and use of this formula
- The connection between this formula and the geometric approach to the area of a triangle
- How to derive the sine rule
- Uses of the sine rule to solve real life problems
- How to derive the cosine rule
- The uses of the cosine rule to solve real life problems
- Use of the clinometer

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/


Three class periods

Title

3D trigonometry

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments, clinometers

Content

These lessons will involve the students in investigating and understanding:

Problems involving 3D diagrams using trigonometry

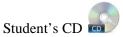
Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

Lesson Idea LCHL.18


Five class periods

Title

Trigonometric formulae and proofs

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments, Formulae and Tables Booklet

Content

These lessons will involve the students in investigating and understanding:

• The derivation of the trigonometric formulae 1, 2,3,4, 5, 6, 7,9 (Appendix in syllabus) (Proofs of 2 & 3 in the previous lesson)

• The uses of the trigonometric formulae 1-24 (Appendix in syllabus)

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

Section 6 Strand 2 Coordinate Geometry

Lesson Idea LCHL.19

Two class periods

Title

Review of Junior Cycle co-ordinate geometry

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- The coordination of the plane
- The distance formula
- The midpoint formula
- The idea of slope as $\frac{Rise}{Run}$
- The slope formula
- The meaning of positive, negative, zero and undefined slope
- The use of slopes to investigate if two lines are parallel
- The use of slopes to investigate if two lines are perpendicular or not
- That 3 points on the coordinate plane but not all on the same vertical line are collinear if and only if the slope between any two of them is the same

(This approach can be used to find the equation of a line between two points)

• The equation of a line in the forms:

$$y - y_1 = m(x - x_1)$$
$$y = mx + c$$
$$ax + by + c = 0$$

- The significance of the variables m and c
- Whether or not a point is in a line
- Where a line intersects the axes and why these points might be of interest to someone trying to interpret or plot a graph
- The interpretation of the intercepts in context
- How to find the slope of a line given its equation
- How to solve problems involving slopes of lines
- How to solve problems involving the intersection of two lines

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

Lesson Idea LCHL.20

Two class periods

Title

Area of a triangle given the coordinates of the vertices

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Content

This lesson will involve the students in investigating and understanding:

- How to calculate the area of a triangle using coordinates
- The connection between this formula ,the geometric approach to the area of a triangle and the formula used in trigonometry for finding the area of a triangle

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.21

Two class periods

Title

Divide a line segment internally in the ratio m:n

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Content

These lessons will involve the students in investigating and understanding:

• How to divide a line segment internally in the ratio m:n (link to similar triangles)

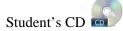
Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.22


Two class periods

Title

The perpendicular distance from a point to a line

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Content

These lessons will involve the students in investigating and understanding:

• How to solve problems involving the perpendicular distance from a point to a line

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Two class periods

Title

The angle between two lines

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Content

These lessons will involve the students in investigating and understanding:

• How to solve problems involving the angle between two lines

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 7 Synthetic Geometry

Prior Knowledge:

Students who have taken <u>Ordinary Level</u> in Junior Certificate (2007 - 2013) will have studied the following (refer to section 2 of this document):

Axioms: 1 - 5

Theorems: 1 - 10

14 - 18

Corollaries 3, 4 and 5 of Theorem 19

Constructions: 1, 2, 6, 10 -14

Students who have taken <u>Higher Level</u> in Junior Certificate (2007 - 2013) will have studied the following (refer to section 2 of this document):

Axioms: 1 - 5

Theorems: 1 - 10, 12 - 15, 17 - 20

(Proofs of 4, 6, 9, 14 and 19)

Constructions: 1, 2, 6, 7, 10 - 14 and 16, 17

Concepts:

Set, plane, point, line, ray, angle, real number, length, degree, triangle, right-angle, congruent triangles, similar triangles, parallel lines, parallelogram, area, tangent to a circle, subset, segment, collinear points, distance, midpoint of a line segment, reflex angle, ordinary angle, straight angle, null angle, full angle, supplementary angles, vertically-opposite angles, acute angle, obtuse angle, angle bisector, perpendicular lines, perpendicular bisector of a line segment, ratio, isosceles triangle, equilateral triangle, scalene triangle, right-angled triangle, exterior angles of a triangle, interior opposite angles, hypotenuse, alternate angles, corresponding angles, polygon, quadrilateral, convex quadrilateral, rectangle, square, rhombus, base and corresponding apex and height of triangle or parallelogram, transversal line, circle, radius, diameter, chord, arc, sector, circumference of a circle, disc, area of a disc, point of contact of a tangent, concurrent lines. Vertex, vertices (of angle, triangle, triangle, polygon), endpoints of segment, arms of an angle, equal segments, equal angles, adjacent sides, angles, or vertices of triangles or quadrilaterals, the side opposite an angle of a triangle, opposite sides or angles of a quadrilateral, centre of a circle.

The following is a suggested sequence for teaching the Leaving Cert. Course. In teaching these lessons, teachers and students can draw from the Teaching and learning Plans and student activities on the website at www.projectmaths.ie

As outlined at the workshops, the use of learning materials such as "geostrips", "anglegs", geo-boards etc. can make the learning so much more enjoyable for students of all perceived abilities.

While proofs are not the issue as regards informal introduction, it is important that students are kept aware that the theorems build logically.

The lesson divisions which follow are for guidance only. The initial lesson ideas give the students a chance to revisit the material they met in the Junior Cycle. This can be done at a pace that is appropriate to the student's needs. It is recommended that new activities and challenges be introduced during this revision so that students do not see it as too much repetition and that they can see new ways of investigating familiar situations.

Note on experimentation and experimental results:

With experimentation, involving measurement, the results are only approximations and won't agree exactly. It is important for students to report faithfully what they find e.g. for a triangle they could find the sum of the angles to be 179^0 or 181^0 etc. The conclusion is that the angles appear to add up to 180^0 . This is a plausible working assumption. There is a distinction between what you can discover and what you can prove.

See Section 8.2 (From Discovery to Proof) of *Geometry for Post-primary School Mathematics*"

Strand 2: Synthetic Geometry and Trigonometry LC syllabus

Students learn	Students working at FL	In addition, students working at OL should be	In addition, students working at HL should be
about	should be able to	able to	able to
2.1 Synthetic geometry *	- perform constructions 18,19,20 (see Geometry for Post- primary School Mathematics)	 perform constructions 16,17,21 (see <i>Geometry for Post-primary School Mathematics</i>) use the following terms related to logic and deductive reasoning: theorem, proof, axiom, corollary, converse, implies investigate theorems 7, 8, 11, 12, 13, 16, 17, 18, 20, 21 and corollary 6 (see <i>Geometry for Post-primary School Mathematics</i>) and use them to solve problems 	 perform constructions 1-15 and 22 (see Geometry for Post-primary School Mathematics) use the following terms related to logic and deductive reasoning: is equivalent to, if and only if, proof by contradiction prove theorems 11,12,13, concerning ratios (see Geometry for Post-primary School Mathematics), which lay the proper foundation for the proof of the theorem of Pythagoras studied at junior cycle

^{*}In the examination, candidates will have the option of answering a question on the synthetic geometry set out here, or answering a problem-solving question based on the geometrical results from the corresponding syllabus level at Junior Certificate. This option will apply for a three year period only, for candidates sitting the Leaving Certificate examination in 2012, 2013 and 2014. There will be no choice after that stage.

One class period

Title

Revision of preliminary concepts - Plane and points, Axioms 1, 2 , 3 & 5 , Theorem 1, Constructions 8.9 & 5

Resources

Geometry Course for Post-Primary School Mathematics

Teaching and Learning Plans:

Plan 6: Planes and Points

Plan7: Introduction to Angles

NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- Plane, points, lines, line segments, rays, collinear points, length of a line segment
- Terms: theorem, proof, axiom, implies, is equivalent to, if and only if
- **Axiom 1:** There is exactly one line through any two given points.
- Axiom 2: [Ruler Axiom]: The properties of the distance between points
- Angle as a rotation, angles in different orientations
- Terms: Perpendicular, parallel, vertical, horizontal
- **Axiom 3:** Protractor Axiom (The properties of the degree measure of an angle)
- That a straight angle has 180° (supplementary angles)
- Vertically opposite angles
- <u>Theorem 1</u>: Vertically opposite angles are equal in measure.
- Construction 8: Line segment of a given length on a given ray
- Construction 9: Angle of a given number of degrees with a given ray as one arm

- **Axiom 5:**Given any line *l* and a point P, there is exactly one line through P that is parallel to *l*.
- Construction 5: Line parallel to a given line, through a given point

Useful websites

www.projectmaths.ie

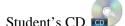
http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

Lesson Idea LCHL.25

One class period

Title


Revision of JC synthetic geometry - Constructions 6,7,10,11,12, Axiom 4, Theorem 2

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set, angle estimator

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- <u>Construction 6</u>: Division of a line segment into 2, 3 equal segments without measuring it
- <u>Construction 7</u>: Division of a line segment into any number of equal segments, without measuring it

Revision of triangles and congruent triangles

- Triangles: scalene, isosceles, equilateral, right-angled
- Construction 10: Triangle given SSS data (Axiom 4 -Congruent triangles)
- Construction 11: Triangle given SAS data (Axiom 4 -Congruent triangles)
- <u>Construction 12:</u> Triangle given ASA data (**Axiom 4** -Congruent triangles)
- More constructions of triangles with SSS, SAS and ASA
- By construction, show that AAA and AAS are not sufficient conditions for congruence.

- Theorem 2: (i) In an isosceles triangle the angles opposite the equal sides are equal.
- What is meant by the term "converse"
- (ii) Conversely, if two angles are equal, then the triangle is isosceles

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.26

One class period

Title

Revision of JC synthetic geometry - Theorems 3, *4, 5, *6, 7 & 8

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- <u>Theorem 3:</u> (i) If a transversal makes equal alternate angles on two lines, then the lines are parallel.
 - (ii) Conversely, if two lines are parallel, then any transversal will make equal alternate angles with them.
- *Theorem 4: The angles in any triangle add to 180° .
- <u>Theorem 5</u>: Two lines are parallel if and only if for any transversal, corresponding angles are equal.
- *Theorem 6: Each exterior angle of a triangle is equal to the sum of the interior opposite angles.

• Theorem 7: The angle opposite the greater of two sides is greater than the angle opposite the lesser. Conversely, the side opposite the greater of two angles is greater than the side opposite the lesser angle.

(Students might engage with proof by contradiction in proving the converse of Theorem 7)

• Theorem 8: Two sides of a triangle are together greater than the third.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.27

One class period

Title

Revision - Constructions 1, 2, 3 & 4

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- Construction 1: Bisector of an angle, using only compass and straight edge
- <u>Construction</u> 2: Perpendicular bisector of a line segment, using only compass and straight edge
- <u>Construction 3</u>: Line perpendicular to a given line *l*, passing through a given point not on *l*.
- Construction 4: Line perpendicular to a given line l, passing through a given point on l

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

Lesson Idea LCHL.28

One class period

Title

Revision: Junior Certificate transformation geometry

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Translations: an intuitive approach using drawings
- Axial symmetry: an intuitive approach using drawings
- Axis of symmetry
- Central symmetry- an intuitive approach using drawings
- Centre of symmetry

Suggested class activities

Students might engage in the following investigations:

Does a translation preserve length?

Does a translation preserve angle size?

Does a translation map a line onto a parallel line?

Does a translation map a triangle onto a congruent triangle?

Does an axial symmetry preserve length?

Does an axial symmetry preserve angle size?

Does an axial symmetry maps a line onto a parallel line?

Does an axial symmetry map a triangle onto a congruent triangle?

How many axes of symmetry does an isosceles triangle have?

How many axes of symmetry does an equilateral triangle have?

How many axes of symmetry does a circle have?

(Draw examples of the above.)

Does a central symmetry preserve length?

Does a central symmetry preserve angle size?

Does a central symmetry map a line onto a parallel line?

Does a central symmetry map a triangle onto a congruent triangle?

Does an isosceles triangle have a centre of symmetry?

Does an equilateral triangle have a centre of symmetry?

Which types of triangle have a centre of symmetry?

Does a circle have a centre of symmetry?

Note: quadrilaterals are investigated in the lessons following.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-

Primary Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.29

1 class period

Title

Revision of quadrilaterals, parallelograms, Theorems *9 & 10, Corollary 1 and Construction 20

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Properties of parallelograms
- *Theorem 9: In a parallelogram, opposite sides are equal, and opposite angles are equal

Conversely, (1) if the opposite angles of a convex quadrilateral are equal, then it is a parallelogram; (2) if the opposite sides of a convex quadrilateral are equal, then it is a parallelogram.

- Remark 1 of *Geometry Course for Post-Primary School Mathematics*: Sometimes it happens that the converse of a true statement is false. For example, it is true that if a quadrilateral is a rhombus, then its diagonals are perpendicular. But it is not true that a quadrilateral whose diagonals are perpendicular is always a rhombus.
- **Remark 2**: The converse of Corollary 1 is false: it may happen that a diagonal divides a convex quadrilateral into two congruent triangles, even though the quadrilateral is not a parallelogram.
- Further properties of parallelograms
- Use of the term "corollary"
- Corollary 1: A diagonal divides a parallelogram into two congruent triangles
- Theorem 10: The diagonals of a parallelogram bisect each other.

Conversely, if the diagonals of a quadrilateral bisect one another, then the quadrilateral is a parallelogram.

- Construction 20: Parallelogram, given the length of the sides and the measure of the angles.
- The properties of different quadrilaterals

Suggested class activities

Students might engage in the following activities which lead to an informal proof of theorem 9:

Draw a parallelogram ABCD which is not a rectangle or a rhombus

Draw in one diagonal BD

Mark in all the alternate angles – they should find 2 pairs

Establish that triangles ABD and BCD are congruent and explain their reasoning

Establish what this means about the opposite sides of parallelogram ABCD?

Make a deduction about the opposite angles of parallelogram ABCD?

The students might determine:

If the diagonal bisects the angles at the vertex

The sum of the four angles of parallelogram ABCD

The result if two adjacent angles of the parallelogram are added together

Students might engage in the following activities which lead to an informal proof of theorem 10: (In all instances they should be encouraged to explain their reasoning.)

Draw a parallelogram ABCD which is not a rectangle or a rhombus

Draw in the two diagonals AC and BD intersecting at E

Determine if the two diagonals equal in length. (Measure)
Mark in all the equal sides and angles in the triangles AED and BEC
Explain why triangles ADE and BEC are congruent (Give a reason.)

Possible further investigations:

The students might determine:

If the triangles AEB and DEC congruent

If the diagonals perpendicular

If the parallelogram contains 4 two pairs of congruent triangles

If the diagonals bisect the vertex angles of the parallelogram

The number of axes of symmetry the parallelogram has

If the parallelogram has a centre of symmetry and its location if it does exist

Students might engage in the following activities about a square, rhombus, parallelogram and rectangle: (In all instances they should be encouraged to explain their reasoning.)

Describe each of them in words.

Draw three examples of each in different orientations.

Determine which sides are equal in length

Determine the sum of the angles in each case

Determine which angles are equal

Determine the sum of two adjacent angles in each case

Establish if a diagonal bisect the angles it passes through

Establish if the diagonals are perpendicular

Determine if a diagonal divide it into two congruent triangles

Calculate the length of a diagonal given the length of its sides, where possible

Establish if the two diagonals equal in length

Determine if the diagonals divide the different shapes into 4 congruent triangles?

Establish if the diagonals bisect each other?

The students should determine the number of axes of symmetry each of the shapes has and which ones have a centre of symmetry

An interesting option would be to conduct the activities above on a KITE.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

One class period

Title

Revision: More on quadrilaterals – investigating a Square

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

Suggested class activities

Students might engage in the following activities relating to a square:

(In all instances they should be encouraged to explain their reasoning.)

Draw a square ABCD

Draw in the two diagonals AC and BD intersecting at E

Determine if the two diagonals are equal in length

Mark in all the equal sides and angles in the triangles AED and BEC

Establish that triangles ADE and BEC are congruent

Determine if the triangles AEB and DEC congruent

Determine if there are two pairs of congruent triangles in the square

Show that the diagonals perpendicular. Give a reason

Establish if the diagonals bisect the vertex angles of the square

Find how many axes of symmetry the square has

Determine if the square has a centre of symmetry and if it does, what is its location

Students might engage in the following activities about a rectangle:

(In all instances they should be encouraged to explain their reasoning.)

Draw a rectangle ABCD which is not a square

Draw in the two diagonals AC and BD intersecting at E and establish if the two diagonals are equal in length

Mark in all the equal sides and angles in the triangles AED and BEC

Establish that ADE and BEC are congruent

Determine if the triangles AEB and DEC congruent

Determine if there are two pairs of congruent triangles in the rectangle

Show that the diagonals are perpendicular

Determine if the diagonals bisect the vertex angles of the rectangle

Find how many axes of symmetry the rectangle has

Determine if the rectangle has a centre of symmetry and if it does, find its location

Possible extra activity:

Repeat these activities for the rhombus ABCD

Useful websites

www.projectmaths.ie

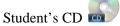
http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.31

One class period

Title


**Theorem 11

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- **Theorem 11: If three parallel lines cut off equal segments on some transversal line, then they will cut off equal segments on any other transversal.
- Proof of this theorem

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Two class periods

Title

**Theorem 12 and **Theorem 13

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- **Theorem 12: Let ABC be a triangle. If a line *l* is parallel to BC and cuts [AB] in the ratio m: n, then it also cuts [AC] in the same ratio.
- Proof of Theorem 12
- Conversely, if line a *l* cuts the sides AB and AC of triangle ABC in the same ratio, then it is parallel to BC.
- The meaning of similar triangles and the difference between similar and congruent triangles.
- **Theorem 13: If two triangles are similar, then their sides are proportional, in order.
- Proof of Theorem 13
- Conversely, if the sides of two triangles are in proportion, then the two triangles are similar.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Two class periods

Title

Constructions 13, 14, 15, *Pythagoras' Theorem (*Theorem 14), converse of Pythagoras' Theorem (Theorem 15)

Proposition 9

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

Construction 13: Right-angled triangle, given length of hypotenuse and one other side.
 Construction 14: Right-angled triangle, given one side and one of the acute angles (several cases)

• Construction 15: Rectangle given side lengths

• *Theorem 14: [Theorem of Pythagoras]

- <u>Theorem 15</u>: [Converse to Pythagoras' Theorem] If the square of one side of a triangle is the sum of the squares of the other two, then the angle opposite the first side is a right angle.
- **Proposition 9**: (RHS) If two right-angled triangles each have hypotenuse and one other side equal in length respectively, then they are congruent.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

One class period

Title

Introduction to area, Theorem 16, Definition 38, Theorem 17 and Theorem 18

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- <u>Theorem 16:</u> For a triangle, the product of the base and height does not depend on the choice of base.
- **Definition 38:** The **area** of a triangle is half the base multiplied by the height.
- Theorem 17: A diagonal bisects the area of a parallelogram.
- Theorem 18: The area of a parallelogram is the base multiplied by the height.

Suggested class activities

Students might engage in the following activities:

In the case of each of these types of triangles: equilateral, isosceles, right-angled and obtuse-angled: draw three diagrams for each type of triangle showing each side as a base and the corresponding perpendicular height.

Students investigate the validity of the following statement and its converse: "Congruent triangles have equal areas".

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Three class periods

Enlargements

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- Enlargements paying attention to
 - o Centre of enlargement , scale factor $k, \ k > 1$, $0 < k < 1, k \in \mathbb{Q}$
 - o How to draw an enlargement given a scale factor when the centre of enlargement is outside the figure to be enlarged
 - O How to draw an enlargement given a scale factor when the centre of enlargement is inside the figure to be enlarged
 - o How to draw an enlargement given a scale factor when the centre of enlargement is a vertex of the figure to be enlarged or is a point on the figure
 - How to find the scale factor
 - That when a figure is enlarged by a scale factor k, the area of the image figure is increased by a factor k^2
- How to solve problems involving enlargements

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 8 Probability and Statistics 1

Lesson Idea LCHL.36

Four class periods

Title

Fundamental Principle of Counting, arrangements and combinations

Resources

Statistics and Probability evening PMDT course 2010 modules 1 -5 (see www.projectmaths.ie)

Student's CD

NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- The Fundamental Principle of Counting
- Arrangements of *n* distinct objects (*n*!)
- Arrangements of *n* distinct object taking *r* at a time
- Combinations of r objects from n distinct objects

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.37

Five class periods

Title

Concepts of probability

Resources

Teaching and Learning Plans 1-5

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)

NCCA Student Resources

Report on the Trialling SEC 2010

Content

These lessons will involve the students in investigating and understanding:

- How to distinguish events where the outcome is certain from events where the outcome is uncertain
- How to represent the probability of an event as a fraction or decimal between 0 and 1 or as a percentage between 0% and 100 %
- How to list all possible outcomes for practical experiments such as rolling one die
- How to determine the probability of an event using the results of an experiment
- How to determine the relative frequency for each outcome by experiment and note how it approaches the theoretical probability as the number of trials increases
- Events that have equally likely outcomes in comparison to those that don't
- Probability as long term relative frequency
- The principle that, in the case of equally likely outcomes, the probability is given by the number of desirable outcomes divided by the total number of outcomes
- How to list all possible outcomes for throwing two dice using a two way table
- How to relate the number of outcomes of an experiment to the fundamental principle of counting
- Independent events
- A standard deck of playing cards, knowing the names of the cards and suits, the number of cards in a pack and in each suit
- How to calculate the theoretical probability of picking named cards from the deck
- How to calculate probabilities of events involving spinners or urns containing different coloured objects

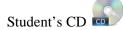
Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie


Three class periods

Title

Rules of probability

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- The basic rules of probability (AND/OR), mutually exclusive events, through the use of Venn diagrams
- The use of the formulae:
 - 1. Addition Rule (for mutually exclusive events only): $P(A \cup B) = P(A) + P(B)$
 - 2. Addition Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 3. Multiplication Rule(for independent events): $P(A \cap B) = P(A) \times P(B)$

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.39

Four class periods

Title

Use of tree diagrams, set theory and counting method in probability

Resources

Statistics and Probability evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- The use of tree diagrams
- The use of set theory
- The use of the counting method (combinations) to evaluate probabilities

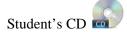
Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie


Five class periods

Title

The purpose of Statistics and the Data Handling Cycle

Resources

The Data Handling Cycle
Appendix A of this document (How to use CensusAtSchool)
NCE-MSTL Summer Course in Statistics and Probability 2009
Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- The purpose and uses of statistics and possible misconceptions and misuses of Statistics
- How to design a plan and collect data on the basis of the above knowledge
- The data handling cycle (Pose a question, collect data, analyse data, interpret the result and refine the original question if necessary)
- The Census at School (CAS) questionnaire as a means of collecting data
- Questionnaire designs
- Populations and samples
- The importance of representativeness so as to avoid biased samples
- Sample selection (Simple Random Sample, stratified, cluster, quota no formulae required, just definitions of these)
- The extent to which conclusions can be generalised
- Primary sources of data (observational (including sample surveys) and experimental studies) and secondary sources of data
 - The importance of randomisation (random assignment of subjects) and the role of the control group in studies
 - o Biases, limitations and ethical issues of each type of study
- The different ways of collecting data

The students will also engage in analysing the spreadsheet of class data returned from the Census at School questionnaire to include:

 Recognising different types of data – category (nominal /ordinal), numerical (discrete/ continuous)

- o Recognising univariate/bivariate data
- o Discuss possible questions which might be answered with the data

Useful websites

www.projectmaths.ie

 $\underline{http://ncca.ie/en/Curriculum_and_Assessment/Post-}$

Primary_Education/Project_Maths/

www.censusatschool.ie

http://www.examinations.ie/

www.cso.ie

Lesson Idea LCHL.41

Eight class periods

Title

Analysing data graphically and numerically, interpreting and drawing inferences from data

Resources

The Data Handling Cycle

NCE-MSTL Summer Course in Statistics and Probability2009

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)

Let's Investigate Strand 1 NCCA Student Resources Report on the Trialling SEC 2010

Content

These lessons will involve the students in investigating and understanding:

- The selection and use of appropriate graphical and numerical methods to describe the sample taking account of data type: bar charts, pie charts, line plots, histograms(equal class intervals), stem and leaf plots (including back to back)
- The concept of a distribution of data

- The distribution of numerical data in terms of shape (concepts of symmetry, clustering, gaps, skewness)
- The selection and use of appropriate numerical methods to describe the sample
 - o The distribution of data in terms of centre (mean, median, mode and the advantages and disadvantages of each)
 - o The relative positions of mean and median in symmetric and skewed data
 - The distribution of numerical data in terms of spread (range, inter-quartile range)
 - 1. The concept of inter-quartile range as a measure of spread around the median
 - o The distribution of data in terms of spread (standard deviation)
 - 1. The concept of standard deviation as a measure of spread around the mean
 - 2. The use of the calculator to calculator to calculate standard deviation
- Analyse plots of data to explain differences in measures of centre and spread
- How to interpret a histogram in terms of distribution of data and make decisions based on the empirical rule (based on a normal distribution)
- Outliers and their effect on measures of centre and spread
- Use percentiles to assign relative standing
- The effect on the mean and of adding or subtracting a constant to each of the data points and of multiplying or dividing the data points by a constant
- Interpreting and drawing inferences from data recognising how sampling variability
 influences the use of sample information to make statements about the population and relating
 the interpretation to the original question

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

Section 9 Differential Calculus and Integral Calculus

Lesson Idea LCHL.42

Four class periods

Title

Revision of function concepts and relations without formulae (listed in 4.5 Junior cycle syllabus)

Resources

Dynamic software package

Motion sensor

Workshop 4 booklet (graph matching)

Content

These lessons will involve the students in investigating and understanding:

- Revision of function concepts
- Graphs of motion
- Quantitative graphs and drawing conclusions from them
- The connections between the shape of a graph and the story of a phenomenon
- Quantity and change of quantity on a graph

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

Four class periods

Title

Limits

Resources

Content

These lessons will involve the students in investigating and understanding:

- The concept of a limit
- How to apply the rules for sums, products and quotients of limits (see 3.1)
- Find by inspection the limits of sequences such as

$$\lim_{n\to\infty}\frac{n}{n+1}; \quad \lim_{n\to\infty}r^n, \quad |r|<1$$

- Derive the formula for the sum to infinity of geometric series by considering the limit of a sequence of partial sums
- Solve problems involving infinite geometric series such as recurring decimals

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.44

Fourteen class periods

Title

Differential Calculus

Resources

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

Rate of change, average rate of change, instantaneous rate of change, the derivative

This will include:

- Calculus as the study of mathematically defined change, (but not necessarily change with respect to time alone -velocity can change with height, temperature can change with energy, force can change with mass, pressure can change with depth etc.)
- How to use graphs and real life examples to analyse rates of change for:
 - Functions of the form f(x) = k where k is a constant
 - o Linear functions links should be established to the slope of a line from coordinate geometry
 - Functions where the rate of change varies these will include the quadratic and more complex functions.
- Instantaneous rate of change (what shows on a speedometer) as opposed to average rate of change say over the course of a journey
- Equality of the instantaneous and average rates of change for linear functions
- How to find the rate of change in situations where it is not constant need to define it at every point
 - O The idea of average rate of change between two points on, for example, the graph of $f(x)=x^2$ and its calculation as the slope of the line connecting the two endpoints of the interval under consideration
 - O That the instantaneous rate of change is not the same as the average rate of change between two points on, for example, $f(x) = x^2$
 - O That the average rate of change approaches the instantaneous rate as the interval under consideration approaches zero (the concept of a limit)
 - That the instantaneous rate of change is the slope of the tangent line at the point
- The meaning of the first derivative as the instantaneous rate of change of one quantity relative to another and the use and meaning of the terms "differentiation" and notation such as $\frac{dy}{dx}$ and f'(x)
- How to find the first derivatives of linear functions using the equation y = mx + c and observing the slope as the first derivative
- How to differentiate linear and quadratic functions from first principles
- Differentiation by rule of the following function types
 - Polynomial
 - Exponential
 - Trigonometric
 - Rational powers
 - Inverse functions
 - Logarithms
- How to find the derivatives of sums, differences, products, quotients and composition of functions of the form of the above functions
- How to apply the differentiation of the above functions to solve problems

- What it means when a function is increasing/decreasing/constant in terms of the rate of change
- How to apply an understanding of the change in $\frac{dy}{dx}$ from positive to zero to negative around a local maximum in order to identify a local maximum (concave downwards)
- How to apply an understanding of the change in $\frac{dy}{dx}$ from negative to zero to positive around a local minimum in order to identify a local minimum (concave upwards)
- Stationary points as points on a curve at which the tangent line has a slope of zero
- Turning points as points on a curve where the function changes from increasing to decreasing or vice versa. (Turning points are also stationary points but the converse may not be true.)
- The meaning of the second derivative as the rate of change of a rate of change at an instant
- The second derivative as being positive (first derivative is increasing) in a region where the graph of a function is concave upwards and negative (first derivative is decreasing) in a region where the graph of the function is concave downwards
- A point of inflection as a point on a curve at which the second derivative equals zero and changes sign (curve changes from concave upwards to concave downwards and the first derivative has a maximum or minimum point)
- Real life examples of the rate of change of a rate of change as in acceleration as a rate of change of velocity
- How to sketch a "slope- graph" of a function given the graph of the function
- How to match a function with graphs of its first and second derivatives
- How to find second derivatives of linear, quadratic and cubic functions by rule
- The application of the second derivative to identify local maxima and local minima

(Students might also associate the points on a normal curve which are one standard deviation away from the mean with points of inflection referred to above.)

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Ten class periods

Title

Integration

Resources

Content

These lessons will involve the students in investigating and understanding:

- Integration as the reverse process of differentiation (antidifferentiation)
- Integration of polynomials and exponential functions
- Use integration to find the average value of a function over an interval
- Determine areas of plane regions bounded by polynomial and exponential functions

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 10 Probability and Statistics 2

Lesson Idea LCHL.46

Four class periods

Title

Revision of counting and probability concepts from fifth year

Resources

Content

These lessons will involve the students in investigating and understanding:

- Fundamental principle of counting, arrangements and combinations
- Concepts of probability
- Rules of probability
- Use of tree diagrams, set theory and counting method in probability

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.47

Five class periods

Title

Conditional probability

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources

Report on the Trialling State Exams Commission(SEC) 2010

Content

These lessons will involve the students in investigating and understanding:

• Conditional probability:

$$P(B \mid A) = \frac{P(A \text{ AND B})}{P(A)} = \frac{P(A \cap B)}{P(A)}$$

- Multiplication Rule(General Case): $P(A \cap B) = P(A) \times P(B \mid A)$
- Formal definition of independent events: A and B are independent if $P(B \mid A) = P(B)$
- The solution of problems involving conditional probability with the use of tables, tree diagrams, and set theory
- The fact that in general $P(A \mid B) \neq P(B \mid A)$
- Examine the implications of $P(A \mid B) \neq P(B \mid A)$ in context

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary Education/Project Maths/

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.48

Three class periods


Title

Bernoulli Trials

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
Teaching and Learning Plan 4

NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- Bernoulli Trials including
 - 1. calculating the probability that the 1^{st} success occurs on the n^{th} Bernoulli trial where n is specified
 - 2. Solving problems involving calculating the probability of *k* successes in *n* repeated Bernoulli trials (normal approximation not required)
 - 3. Calculating the probability that the *k*th success occurs on the *n*th Bernoulli trial

(A Bernoulli trial is a statistical experiment consisting of n repeated trials where each trial can result in just two possible outcomes. We call one of these outcomes a success and the other, a failure. The probability of success, denoted by P, is the same on every trial. The trials are independent i.e. the outcome on one trial does not affect the outcome on other trials.)

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.49

Four class periods

Title

Random variables and expected value

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
Let's Investigate Strand 1
NCCA Student Resources

Content

These lessons will involve the students in investigating and understanding:

- Random variables, discrete and continuous, which lead to discrete and continuous probability distributions
- Expected value E(X) of probability distributions
- The calculation of expected value and the fact that this does not need to be one of the outcomes
- Standard deviation of probability distributions
- The role of expected value in decision making and the issue of fair games

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.50

Two class periods

Title

Overview of probability concepts

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources
Report on the Trialling SEC 2010

Content

These lessons will involve the students in participating in investigating and understanding:

• Overview of probability using all rules and methods

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

Five class periods

Title

Revision of statistics concepts from 5th year

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources
Report on the Trialling SEC 2010

Content

These lessons will involve the students in participating in investigating and understanding:

- The data handling cycle
- Analysing data graphically and numerically, interpreting and drawing inferences from data

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum and Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

Five class periods

Title

Bivariate data, scatter plots, correlation

Resources

Let's Investigate Strand 1

NCCA Student Resources

The Data Handling Cycle

NCE-MSTL Summer Course in Statistics and Probability2009

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)

Report on the Trialling SEC 2010

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Bivariate data versus univariate data
- The use of scatter plots to determine the relationship between variables
- That correlation always has a value from -1 to +1 inclusive, and that it measures the extent of linear relationship between two variables
- How values of correlation coefficients match different scatter plots
- That correlation does not imply causality
- How to draw the line of best fit by eye
- How to make predictions based on the line of best fit
- How to calculate the correlation coefficient by calculator

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

Four class periods

Title

Normal Distribution and Standard Normal

Resources

Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)
NCCA Student Resources

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Continuous probability distributions the normal distribution and the standard normal distribution
- The solution of problems involving reading probabilities from the normal distribution tables

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

www.censusatschool.ie

www.cso.ie

Lesson Idea LCHL.54

Four class periods

Title

Drawing inferences from data, the concept of a hypothesis test, margin of error

Resources

NCE-MSTL Summer Course in Statistics and Probability2009
Statistics and Probability PMDT evening course 2010 modules 1 -5 (see www.projectmaths.ie)

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Use of simulations to explore the variability of sampling statistics from a known population and to construct sampling distributions
- How sampling variability influences the use of sample information to make statements about the population
- The concept of a hypothesis test
- The distinction between a null and an alternative hypothesis
- Calculation of the margin of error for a population proportion $(\frac{1}{\sqrt{n}})$
- How to conduct a hypothesis test on a population proportion using the margin of error

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

http://www.examinations.ie/

www.censusatschool.ie

Section 11 Synthetic Geometry 2

Lesson Idea LCHL.55

One class period

Title

Theorem *19, Corollaries 2, 3, 4 and 5

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

Higher Level only:

- *Theorem 19: The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.
- **Corollary 2:** All angles at points of a circle, standing on the same arc, are equal (and the converse)
- Corollary 3: Each angle in a semi-circle is a right angle.
- Corollary 4: If the angle standing on a chord [BC] at some point of the circle is a right-angle, then [BC] is a diameter.
- Corollary 5: If ABCD is a cyclic quadrilateral, then opposite angles sum to 180°.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

One class period

Title

Theorem 20, Corollary 6 and Construction 19

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- Theorem 20: (i) Each tangent to a circle is perpendicular to the radius that goes to the point of contact.
 - (ii) If P lies on the circle S, and a line l is perpendicular to the radius to P, then l is a tangent to S.
- Corollary 6: If two circles intersect at one point only, then the two centres and the point of contact are collinear.
- Construction 19: Tangent to a given circle at a given point on it.

Useful websites

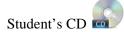
www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.57

Two class periods


Title

Theorem 21 & Construction 18

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

- Theorem 21: (i) The perpendicular from the centre of a circle to a chord bisects the chord.
 - (ii) The perpendicular bisector of a chord passes through the centre of a circle.
- Construction 18: Angle of 60° , without using a protractor or set square

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

http://www.examinations.ie/

Lesson Idea LCHL.58

Two class periods

Title

Constructions 16 and 17

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

• <u>Construction 16</u>: Circumcentre and circumcircle of a given triangle, using only straight edge and compass.

- **Definition 43** circumcircle, circumcentre, circumradius (*Geometry Course for Post-Primary School Mathematics*)
- <u>Construction 17</u>: Incentre and incircle of a given triangle, using only straight edge and compass.
- **Definition 44** incircle, incentre, inradius (Geometry Course for Post-Primary School Mathematics)

Suggested class activities

Students might engage in the following activities:

Draw the circumcentre and incentre for an acute-angled triangle, a right-angled triangle, an obtuse-angled triangle.

In which instances is the circumcentre inside the triangle?

In which instances is the incentre inside the triangle?

Useful websites

www.projectmaths.ie

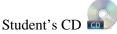
http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

http://www.examinations.ie/

Lesson Idea LCHL.59

One class period

Title


Construction 21 and 22

Resources

Geometry Course for Post-Primary School Mathematics NCCA Student Resources

A mathematical instruments set

Dynamic software package

Content

These lessons will involve the students in investigating and understanding:

• **Definition 45:** Medians and centroid

(Geometry Course for Post-Primary School Mathematics)

• <u>Construction 21</u>: Centroid of a triangle

• **Definition 46:** Orthocentre (Geometry Course for Post-Primary School Mathematics)

• Construction 22: Orthocentre of a triangle

Suggested class activities

Students might engage in the following activities:

Draw the centroid and orthocentre for an acute-angled triangle, a right-angled triangle, an obtuse-angled triangle.

In which instances is the centroid inside the triangle?

In which instances is the orthocentre inside the triangle?

OPTIONAL:

Higher Level students might consider the concept of "Euler's Line".

The orthocentre, centroid and circumcentre in any triangle are always in line and this is called Euler's Line.

The incentre is on Euler's Line only in the case of an isosceles triangle.

In the case of an equilateral triangle, the orthocentre, centroid, circumcentre and incentre coincide.

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 12 Coordinate Geometry of the Circle

Lesson Idea LCHL.60

Eight class periods

Title

Co-ordinate geometry of the circle

Resources

Graph paper, mathematical set

Dynamic geometry software package, set of board drawing instruments

Content

These lessons will involve the students in investigating and understanding:

- That $x^2 + y^2 = r^2$ represents the equation of a circle centre (0,0) and radius of length r (Link to Pythagoras' Theorem distance from any point p(x, y) on the circle to the centre of the circle is equal to the length of the radius of the circle.)
- That (x-h)² + (y-k)² = r² represents the equation of a circle centre (h, k) and radius of length r
 (Link to Pythagoras' Theorem distance from any point p(x, y) on the circle to the centre of the circle is equal to the length of the radius of the circle.)
- Recognise that $x^2 + y^2 + 2gx + 2fy + c = 0$ represents the relationship between the x and y coordinates of points on a circle centre (-g,-h) and radius r where $r = \sqrt{g^2 + f^2 c}$
- How to solve problems involving a line and a circle

Useful websites

www.projectmaths.ie

<u>http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/</u>

Section 13 Financial Maths

Lesson Idea LCHL.61

Ten class periods

Title

Financial Maths

Resources

Financial Maths booklet

Student's CD

Content

These lessons will involve the students in investigating and understanding:

- How to solve problems involving
 - o Markup (profit as a % of cost price)
 - o Margin (profit as a % of selling price)
 - o Income tax and net pay including other deductions
 - o Compound interest including terms such as AER, APR, CAR
 - Depreciation (reducing balance method)
 - Perform calculations involving formulae for compound interest and depreciation (reducing balance method)
 - o Currency transactions
 - o Present value
 - How to solve problems involving finite geometric series in financial applications e.g. deriving a formula for a mortgage repayment
 - How to use present value when solving problems involving loan repayments and investments

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 14 Proof by Induction

Lesson Idea LCHL.62

Three class periods

Title

Proof by Induction

Resources

Content

These lessons will involve the students in investigating and understanding:

Proof by induction for the following:

• Simple identities such as the sum of the first *n* natural numbers and the sum of a finite geometric series.

• Simple inequalities such as $2^n \ge n^2$ $(n \ge 4)$

$$(1+x)^n \ge 1 + nx \ (n > -1)$$

• Factorisation results such as 3 is a factor of 4n-1

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Section 15 Complex Numbers

Lesson Idea LCHL.63

6 class periods

Title

Complex numbers 1

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Teaching and Learning Plan:

• Complex numbers 1

Content

These lessons will involve the students in investigating and understanding:

- The origin and need for complex numbers
- The use of complex numbers to model two dimensional systems as in computer games, alternating current and voltage etc.
- How to interpret multiplication by i as a rotation of 90° anticlockwise
- How to express complex numbers in rectangular form a + ib and illustrate them on the Argand diagram
- How to investigate the operations of addition and subtraction of complex numbers in the rectangular form (a+ib) using the Argand diagram
- How to interpret the modulus as distance from the origin on an Argand diagram
- How to interpret multiplication by a complex number as a "multiplication of" the modulus by a real number combined with a rotation
- How to interpret the complex conjugate as a reflection in the real axis
- Division of complex numbers in the rectangular form (a+ib)
- Calculate conjugates of sums and products of complex numbers
- How to solve quadratic equations having complex roots and how to interpret the solutions

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Lesson Idea LCHL.64

8 class periods

Title

Complex numbers 2

Resources

Graph paper, mathematical set, dynamic geometry software package, set of board drawing instruments

Teaching and Learning Plan:

• Complex numbers 2

Content

These lessons will involve the students in investigating and understanding:

- How to use the *Conjugate Root Theorem* to find the roots of polynomials
- How to express complex numbers in polar form
- How to work with complex number in rectangular and polar form to solve quadratic and other equations
- How to use De Moivre's Theorem
- How to prove De Moivre's Theorem for $n \in \mathbb{N}$
- How to use De Moivre's theorem to solve $z^n = a$, where $n \in \mathbb{Z}$ and $z = r\cos\theta + i\sin\theta$ and for applications such as the nth roots of unity, $n \in \mathbb{N}$ and identities such as $\cos 3\theta = 4\cos^3\theta 3\cos\theta$

Useful websites

www.projectmaths.ie

http://ncca.ie/en/Curriculum_and_Assessment/Post-Primary_Education/Project_Maths/

Appendix A Geometry: Thinking at Different Levels The Van Hiele Theory

The **Van Hiele model** describes how students learn geometry. Pierre van Hiele and Dina van Hiele-Geldof, mathematics teachers from the Netherlands, observed their geometry students in the 1950's. The following is a brief summary of the Van Hiele theory. According to this theory, students progress through 5 levels of thinking starting from merely recognising a shape to being able to write a formal proof. The levels are as follows:

*Visualisation (Level 0)

The objects of thought are shapes and what they look like.

Students have an overall impression of a shape. The appearance of a shape is what is important. They may think that a rotated square is a "diamond" and not a square because it is different from their visual image of a square. They will be able to distinguish shapes like triangles, squares, rectangles etc but will not be able to explain, for example, what makes a rectangle a rectangle. **Vocabulary**: Students use visual words like "pointy", "curvy", "corner" as well as correct language like angle, rectangle and parallelogram.

*Analysis (Level 1)

The objects of thought are "classes" of shapes rather than individual shapes.

- Students think about what makes a rectangle a rectangle and can separate the defining characteristics of a rectangle from irrelevant information like size and orientation. They recognize its parts (sides, diagonals and angles) and compare their properties (similar, congruent)
- They understand that if a shape belongs to a class like "rectangle", then it has all the properties of that class (2 pairs of equal sides, right angles, 2 equal diagonals, 2 axes of symmetry).
- **Vocabulary:** words like parallel, perpendicular and congruent relating to properties within a figure and the words all, always, sometimes, never, alike, different.
- A concise definition of a figure, using a sufficient rather than an exhaustive list of properties is not possible at this level.
- They do not deal with questions like "Is a square a parallelogram?" but just look at the properties of each class of shape, without comparing the classes.

Relational/Ordering/Informal Deduction (Level 2)

The objects of thought are the properties of shapes.

- Students are ready to understand interrelationships of properties within figures and between figures. Opposite sides of a parallelogram are parallel and opposite angles are equal.
- A rectangle is a parallelogram since it has all the properties of a parallelogram as well as all 90° angles.

^{*}Some visualisation and analysis is covered in Primary School.

- Students can recognise the difference between a statement and its converse. All squares are rectangles (true) is different from all rectangles are squares (not true).
- Capable of "if -then" thinking if a shape is a rectangle then all the angles in it are right angles. If $|\langle A| = |\langle B| \text{ and } |\langle B| = |\langle C| \text{ then } |\langle A| = |\langle C|$
- They can select one or two properties to define a figure rather than an exhaustive list. If a quadrilateral has 4 equal sides and one right angle it must be a square.
- Students can discover new properties by simple deduction. The 2 acute angles in a right angled triangle add to 90⁰ because all the angles in a triangle add up to 180⁰. They can explain logically without having to measure everything.

Formal deduction (Level 3)

Students learn how to use an axiomatic system to establish geometric theory. This is the level at which proof of Theorems is learned. The sequence of theorems given in the appendix is arranged in such a manner that each theorem builds on the previous theorem(s).

Rigor (Level 4)

Comparing different axiomatic systems – not done at secondary level

Characteristics of these levels: Students cannot function at any particular level unless they are competent at all previous levels. The teacher's role is crucial in structuring activities to bring students from one level to the next.

How does the teacher bring students from any one level to the next?

5 phases of learning:

- 1. In an informal discussion of the topic, students are asked to give their initial observations.
- 2. The teacher provides structured activities such as drawing, making and measuring.
- 3. The students then verbalise and write down what they have learned and report back in groups to the class, which leads to a class discussion.
- 4. The teacher then provides an activity which will require students to apply what they have discovered
- 5. In the last stage students are required to summarise all they have learned and should be able to remember it as they have discovered it through guidance.

A PowerPoint presentation of the Van Hiele theory can be got at www.projectmaths.ie

2 examples are given on the PowerPoint slides

(1) Using similar triangles to show advancement between levels and

(2) Using an investigation of the rhombus to show how to progress from level 0 to level 1 with this figure using the 5 teaching phases.							
A mind map of Van Hiele can be found at http://agutie.homestead.com/files/mindmap/van_hiele_geometry_level.html							

Appendix B

Guide to Theorems, Axioms and Constructions at all Levels

This is intended as a quick guide to the various axioms, theorems and constructions as set out in the *Geometry Course for Post-Primary School Mathematics*. You can get this from the project maths website: www.projectmaths.ie

It is not intended as a replacement for this document, merely as an aid to reading at a glance which material is required to be studied at various levels. The sequence of theorems as given must be followed.

As stated in the heading, these theorems and constructions are underpinned by 46 definitions and 20 propositions which are all set out in the *Geometry Course for Post-Primary School Mathematics*, along with many undefined terms and definable terms used without explicit definition.

- *An **axiom** is a statement accepted without proof, as a basis for argument
- *A **theorem** is a statement deduced from the axioms by logical argument. Theorems can also be deduced from previously established theorems.
- * A **proposition** is a useful or interesting statement that could be proved at this point, but whose proof is not stipulated as an essential part of the programme. Teachers are free to deal with them as they see fit, but they should be mentioned, at least (Appendix p. 20, footnote).
- *The instruments that may be used for **constructions** are listed and described on page 38 of the Appendix and are a straight edge, compass, ruler, protractor and set-square.

Terms

Students at Junior Certificate Higher level and Leaving Certificate

Ordinary level will be expected to understand the meanings of the following terms related to logic and deductive reasoning:

Theorem, proof, axiom, corollary, converse, implies.

In addition, students at **Leaving Certificate Higher level** will be expected to understand the meanings of the following terms related to logic and deductive reasoning:

Is equivalent to, if and only if, proof by contradiction.

Synthetic Geometry

Guide to Axioms, Theorems and Constructions for all Levels

Information Technology is used whenever and wherever appropriate to help to present mathematical concepts

effectively to students. In this document the symbol appears at the corresponding position of the content to indicate that an interactive IT module is available on the Project Maths Student's CD.

	Axioms and Theorems (supported by 46 definitions, 20 propositions) *proof required for JCHL and LCHL ** proof required for LCHL only	CMN Introd. Course	JC ORD	JC HR	LC FDN	LC ORD	LC HR
	Axiom 1: There is exactly one line through any two given points	V	V	$\sqrt{}$	V	V	1
	Axiom 2: [Ruler Axiom]: The properties of the distance between points.	1	V	V	1	V	V
	Axiom 3: Protractor Axiom (The properties of the degree measure of an angle).	V	1	√	1	V	1
1	Vertically opposite angles are equal in measure.	1	1	√ -	1	1	1
	Axiom 4: Congruent triangles conditions (SSS, SAS, ASA)	V	V	$\sqrt{}$	√ 	V	V
2	In an isosceles triangle the angles opposite the equal sides are equal. Conversely, if two angles are equal, then the triangle is isosceles.	1	√	V	√	√	V
	Axiom 5: Given any line l and a point P, there is exactly one line through P that is parallel to l.	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
3	If a transversal makes equal alternate angles on two lines then the lines are parallel. Conversely, if two lines are parallel, then any transversal will make equal alternate angles with them.	V	√	V		√	V
4*	The angles in any triangle add to 180□.	V	V	$\sqrt{}$	V	V	V
5	Two lines are parallel if, and only if, for any transversal, the corresponding angles are equal.	V	1	V	1	1	1
6*	Each exterior angle of a triangle is equal to the sum of the interior opposite angles.	V	1	V	V	1	V
7	The angle opposite the greater of two sides is greater than the angles opposite the lesser. Conversely, the side opposite the greater of two angles is greater than the side opposite the lesser angle.					V	1
8	Two sides of a triangle are together greater than the third.					V	1
9*	In a parallelogram, opposite sides are equal, and opposite angles are equal. Conversely, (1) if the opposite angles of a convex quadrilateral are equal, then it is a parallelogram; (2) if the opposite sides of a convex quadrilateral are equal, then it is a parallelogram.		1	√	V	V	1
	Corollary 1 . A diagonal divides a parallelogram into two congruent triangles.			$\sqrt{}$			1
10	The diagonals of a parallelogram bisect each other. Conversely, if the diagonals of a quadrilateral bisect one another, then the quadrilateral is a parallelogram.		1	√	V	√	1

	Axioms and Theorems	CMN	JC	JC	LC	LC	LC
	(supported by 46 definitions, 20 propositions)	Introd.	ORD	HR	FDN	ORD	HR
	*proof required for JCHL and LCHL	Course					
	** proof required for LCHL only						
11**				$\sqrt{}$		V	$\sqrt{}$
	If three parallel lines cut off equal segments on some						
	transversal line, then they will cut off equal segments on any other transversal.						
12**	tuiis visu.					V	V
	Let ABC be a triangle. If a line l is parallel to BC and cuts						
	[AB] in the ratio m:n, then it also cuts [AC] in the same ratio.						
	Conversely, if the sides of two triangles are in proportion, then the						
13**	two triangles are similar.		1	√	V	V	1
13	If two triangles are similar, then their sides are proportional,		V	V	V	V	V
	in order (and converse)						
14*			√	$\sqrt{}$	$\sqrt{}$	√	V
	[Theorem of Pythagoras]In a right-angled triangle the square						
15	of the hypotenuse is the sum of the squares of the other two sides.		V		V	V	V
13	[Converse to Pythagoras]. If the square of one side of a		V	V	V	V	V
	triangle is the sum of the squares of the other two, then the angle						
	opposite the first side is a right angle.						
	Proposition 9 : (RHS). If two right-angled triangles have			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
	hypotenuse and another side equal in length respectively, then they						
16	are congruent.					V	V
10	For a triangle, base x height does not depend on the choice of					v	'
	base.						
	Definition 38: The area of a triangle is half the base by the height.					V	V
17	A diagonal of a morallal agram history the area					$\sqrt{}$	
18	A diagonal of a parallelogram bisects the area.				-	1	V
	The area of a parallelogram is the base x height.			,		•	,
19*				$\sqrt{}$			V
	The angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.						
	Corollary 2†: All angles at points of a circle, standing on the						V
	same arc are equal (and converse).						
	Corollary 3: Each angle in a semi-circle is a right angle.		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	V
	Corollary 4: If the angle standing on a chord [BC] at some point			$\sqrt{}$	\checkmark	$\sqrt{}$	
	of the circle is a right-angle, then [BC] is a diameter.			,			. 1
	Corollary 5: If ABCD is a cyclic quadrilateral, then opposite angles sum to 180□.			V			√
20	ungles sum to 100 .					$\sqrt{}$	V
	(i) Each tangent is perpendicular to the radius that goes						
	to the point of contact. (ii) If P lies on the circle S, and a line l is perpendicular						
	to the radius to P, then I is a tangent to S.						
	Corollary 6: If two circles intersect at one point only, then the					√	$\sqrt{}$
	two centres and the point of contact are collinear.						
21						√	V
	(i) The perpendicular from the centre to a chord bisects						
	the chord.						
	(ii) The perpendicular bisector of a chord passes						
	through the centre.						
+ The	corollaries are numbered as in the Geometry for Post-primary School M.	Nathomatic	er coroll	ary 2 is	the fire	t one rel	ating

[†] The corollaries are numbered as in the *Geometry for Post-primary School Mathematics*; corollary 2 is the first one relating to theorem 19

	Constructions	CMN	JC	JC	LC	LC	LC
	(Supported by 46 definitions, 20 propositions, 5 axioms and 21	Introd.	ORD	HR	FN	ORD	HR
	theorems)	Course					
	theorems)						
1		V	√	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$
	Bisector of an angle, using only compass and straight edge.						
2	Down I'm Lastin down Comment of the last o	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$
	Perpendicular bisector of a segment, using only compass and straight edge.						
3	and straight edge.			√			V
3	Line perpendicular to a given line l, passing through a given			*			٧
	point not on 1.						
4		$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	Line perpendicular to a given line l, passing through a given						
	point on 1.			,			,
5	Line morellel to given line through a given point	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$
6	Line parallel to given line, through a given point.	√	1		V	√	V
U	Division of a line segment into 2 or 3 equal segments	•	`	*	'	, v	٧
	without measuring it.						
7	Division of a line segment into any number of equal segments,			$\sqrt{}$			V
	without measuring it.						
8		V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	Line segment of a given length on a given ray.			,			,
9	Angle of a given number of degrees with a given ray as one		V	V	V	$\sqrt{}$	1
10	arm.		√	√	V	V	1
10	Triangle, given lengths of 3 sides.		`	`	•	,	'
11			√	$\sqrt{}$	$\sqrt{}$	V	V
	Triangle, given SAS data.						
12	Triangle, given ASA data		V	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$
13	Triangle, given ASA data		V		V	√	V
13	Right-angled triangle, given length of hypotenuse and one		`	*	•	, v	٧
	other side						
14				$\sqrt{}$	$\sqrt{}$	V	1
	Right-angled triangle, given one side and one of the acute						
	angles.		,			-	,
15	Rectangle given side lengths.		1	V	V	V	V
16	Account of the lengths.					1	√
10	Circumcentre and circumcircle of a given triangle, using					·	,
	only straight edge and compass.						
17						V	1
	Incentre and incircle of a triangle of a given triangle, using						
10	only straight edge and compass.				2	√	2
18	Angle of 60□ without using a protractor or set square.				V	V	V
19	ringle of ool without using a productor of set square.					V	V
	Tangent to a given circle at a given point on it.						
20	D 11 1 4 1 4 64 11 14				1	1	1
	Parallelogram, given the length of the sides and the measure						
21	of the angles.					2	1
21	Centroid of a triangle.					√	V
22							√
	Orthocentre of a triangle.						

Appendix C

Investigations of quadrilaterals and triangles

Investigating Quadrilaterals

Quadrilaterals	Square	Rhombus	Rectangle	Parallelogram	Trapezium
		(not a square)	(not a square)	(not a rectangle or a rhombus)	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
Describe it in words.					
Draw three examples in different orientations.					
How many axes of symmetry does it have? Show on a diagram.					
Does it have a centre of symmetry? Show on a diagram.					
Which sides are equal?					
What is the sum of all the angles?					
Are all angles equal?					
Which angles					

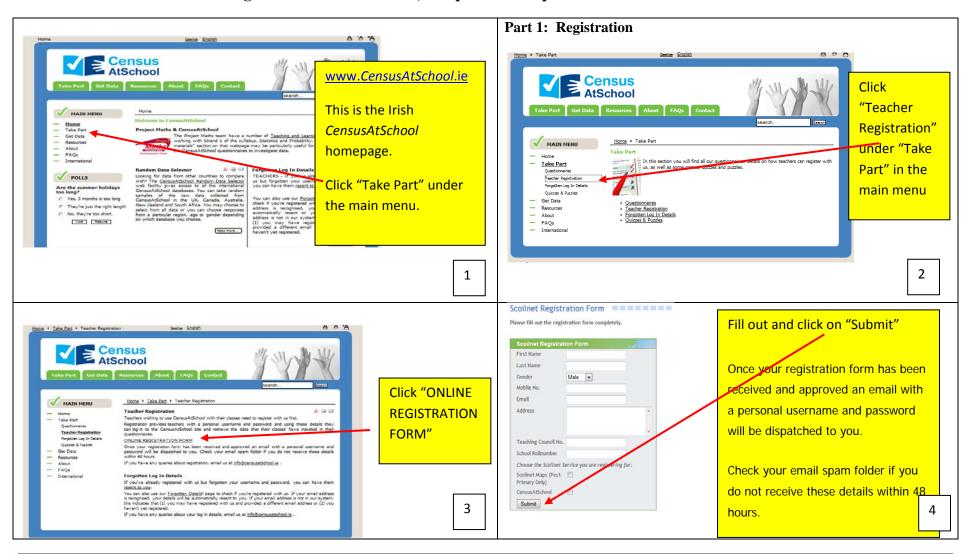
Quadrilaterals	Square	Rhombus	Rectangle	Parallelogram	Trapezium
		(not a square)	(not a square)	(not a rectangle or a rhombus)	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
are equal?					
What is the sum of two adjacent angles?					
Does a diagonal bisect the angles it passes through?					
Does a diagonal divide it into two congruent triangles?					
Given the length of its sides, can you calculate the length of a diagonal?					
Are the two diagonal s equal in length?					
Do the diagonals divide it into four congruent triangles?					
Do the diagonals divide it into					

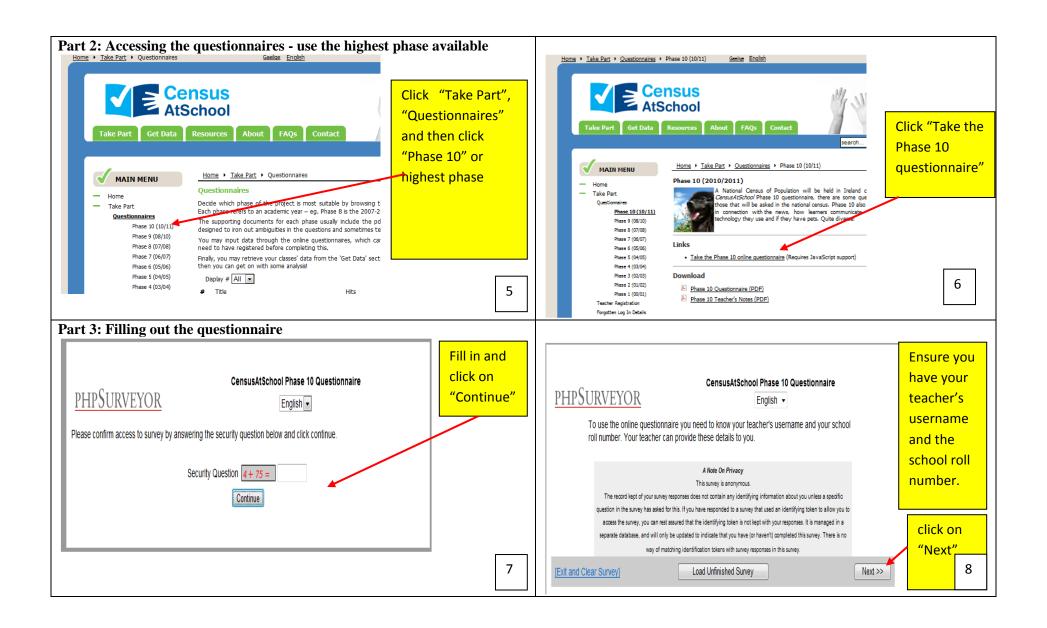
Quadrilaterals	Square	Rhombus (not a square)	Rectangle (not a square)	Parallelogram (not a rectangle or a rhombus)	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
four triangles of equal area?					
Are the diagonals perpendicular?					
Do the two diagonals bisect each other?					
What information do you need to calculate its area?					
How do you calculate it?					
Does a diagonal bisect its area?					

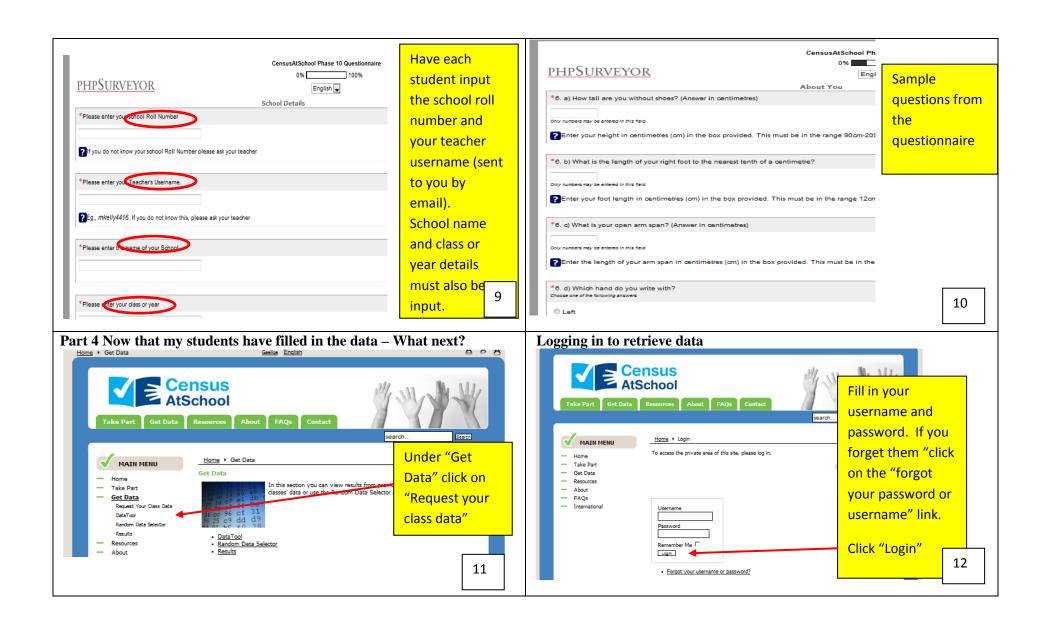
Investigating triangles

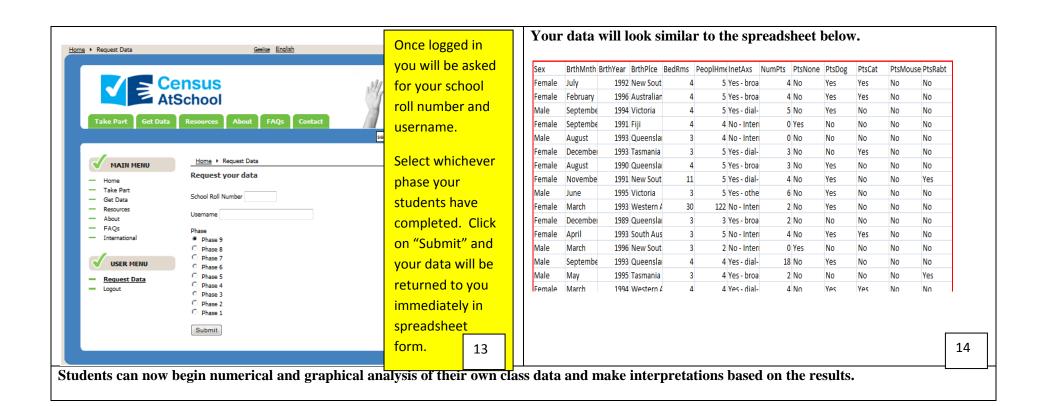
Triangles	Equilateral	Isosceles	Right angled	Obtuse Angled
Describe it in words.				
Draw three examples in different orientations.				
How many axes of symmetry does it have? Show on a diagram.				
Does it have a centre of symmetry? Show on a diagram.				
What is the sum of the three angles?				
Are all angles equal?				
Are there any equal angles? Where?				
Can you say for certain what size the angles are?				
Apart from the isosceles triangles themselves which of the others could also be isosceles?				
What information do you need to				

Triangles	Equilateral	Isosceles	Right angled	Obtuse Angled
calculate its area?				
How do you				
calculate it?				
Draw 3 diagrams				
for each type of triangle showing				
each side as a base				
and the corresponding				
perpendicular				
height?				
How do you				
calculate the area?				
Is the centroid				
inside the triangle always?				
Is the				
circumcentre inside the triangle				
always?				
Is the incentre				
inside the triangle always?				


Quadrilaterals	Square	Rhombus	Rectangle	Parallelogram	Trapezium
		(not a square)	(not a square)	(not a rectangle or a rhombus)	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
Describe it in words.	A square is a quadrilateral in which all sides are equal in length and all angles are 90° . (need only say that one angle is 90°)	A rhombus is a quadrilateral with all sides equal and opposite angles equal. (a parallelogram with all sides equal in length.)	A rectangle is a quadrilateral with opposite sides equal and parallel and all interior angles equal to 90°.	A parallelogram is a quadrilateral with opposite sides equal and parallel and opposite angles equal.	A trapezium is a quadrilateral which has 1 pair of parallel sides.
Draw three examples in different orientations.		$\bigcirc \Box$			
How many axes of symmetry does it have? Show on a diagram.	4	2	2	None	None if the non parallel sides are not equal in length.
Does it have a centre of symmetry? Show on a diagram.	√	√	√	✓	No
Which sides are equal?	All	All	Opposite	Opposite	none
What is the sum of all the angles?	360°	360°	360°	360°	360 ⁰
Are all angles equal?	✓	Х	√	Х	Х
Which angles	All angles	Opposite	All angles	Opposite	


Quadrilaterals are equal? What is the	Square	Rhombus (not a square)	Rectangle (not a square)	Parallelogram (not a rectangle or a rhombus) angles	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
sum of two adjacent angles?	180°	180^{0}	180°	180^{0}	180^{0}
Does a diagonal bisect the angles it passes through?	✓	√	X	X	Х
Does a diagonal divide it into two congruent triangles?	✓	√	✓	✓	Х
Given the length of its sides, can you calculate the length of a diagonal?	✓	No. Need to know an angle. Investigate using geostrips.	√	No. Need to know an angle.	Need to know the lengths of two adjacent sides and the angle between them.
Are the two diagonal s equal in length?	✓	х	√	х	х
Do the diagonals divide it into four congruent triangles?	✓	✓	х	х	х
Do the diagonals divide it into	✓	√	√	√	х


Quadrilaterals	Square	Rhombus (not a square)	Rectangle (not a square)	Parallelogram (not a rectangle or a rhombus)	(not a parallelogram) and not an isosceles trapezium which has the non parallel sides equal in length)
four triangles of equal area?					
Are the diagonals perpendicular?	√	✓	X	X	х
Do the two diagonals bisect each other?	√	✓	✓	✓	X
What information do you need to calculate its area? How do you calculate it?	One side length x. Area = x^2 (Base (b) and perpendicular height (h) from a vertex to that base Area = $b \times h$	Base (b) and perpendicular height (h)from a vertex to that base Area = $b \times h$ If you know the lengths of the diagonals x and y Area = $\frac{1}{2} \times y$.	Lengths of 2 adjacent sides l and b . Area = $l \times b$. (Base (b) and perpendicular height (h) from a vertex to that base Area = $b \times h$)	Base (<i>b</i>) and perpendicular height (<i>h</i>)from a vertex to that base Area = <i>b</i> x <i>h</i>	The lengths of its parallel sides (a and b) and the perpendicular distance between them. Area = $\frac{1}{2}(a+b)h$
Does a diagonal bisect its area?	✓	√	✓	√	


Appendix D

How to register for CensusAtSchool, complete online questionnaires and retrieve class data

Appendix E: Trigonometric Formulae

 $\cos^2 A + \sin^2 A = 1$ 1.*

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ sine rule: 2.*

 $a^2 = b^2 + c^2 - 2bc\cos A$ cosine rule: 3.*

 $\cos(A - B) = \cos A \cos B + \sin A \sin B$ 4.*

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ 5.*

 $\cos 2A = \cos^2 A - \sin^2 A$ 6.*

7.* $\sin(A+B) = \sin A \cos B + \cos A \sin B$

8. $\sin(A - B) = \sin A \cos B - \cos A \sin B$

 $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ 9.*

 $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ 10.

11. $\sin 2A = 2\sin A\cos A$

 $\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$ 12.

 $\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$ 13.

 $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$ 14.

 $\cos^2 A = \frac{1}{2} \left(1 + \cos 2A \right)$ 15.

 $\sin^2 A = \frac{1}{2} (1 - \cos 2A)$ 16.

17. $2\cos A\cos B = \cos(A+B) + \cos(A-B)$

18. $2\sin A\cos B = \sin(A+B) + \sin(A-B)$

19. $2\sin A\sin B = \cos(A-B) - \cos(A+B)$

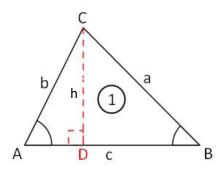
20. $2\cos A\cos B = \sin(A+B) + \sin(A-B)$

 $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$ 21.

 $\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$ 22.

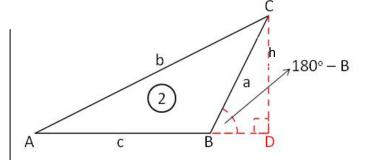
 $\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$ 23.

 $\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$


* Proof required for higher level

Appendix F – Sample Derivations of the formulae 1, 2, 3, 4, 5, 6, 7, 9

1.* $\cos^2 A + \sin^2 A = 1$ [Pg. 13, Trigonometry] Distance from (0, 0) to $(\cos A, \sin A)$ is 1 $\Rightarrow \sqrt{(\cos A - 0)^2 + \sin(A - 0)^2} = 1$ $\Rightarrow \cos^2 A + \sin^2 A = 1$ Unit Circle $(\cos A, \sin A)$ (0, 0) (0, 0)


2.* sine formula:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
 [Pg. 16, Trigonometry of the triangle

Need to examine two cases – acute angled triangles such as $\Delta ACB\,$ and obtuse angled triangles such as $\Delta BCD\,$

Case 1: \triangle ACB (acute angled)

$$\sin A = \frac{h}{b} \Longrightarrow h = b \sin A$$

Case 2: \triangle BCD (obtuse angled)

$$sin A = \frac{h}{h} \Rightarrow h = b sin A$$

$$\sin B = \frac{h}{a} \Rightarrow h = a \sin B$$

$$\sin(180 - B) = \frac{h}{a}$$

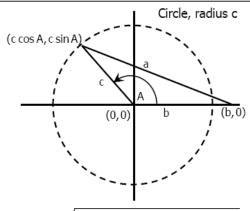
$$\sin B = \frac{h}{a} \quad [\text{as } \sin(180 - B) = \sin B]$$

$$\Rightarrow h = a \sin B$$

In both cases:

 $h = b \sin A$ and $h = a \sin B$

Equating *h*'s


$$a \sin B = b \sin A \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B}$$

Similarly if the perpendicular height was dropped from A it would yield:

$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

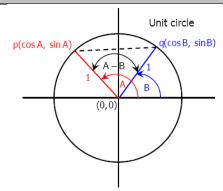
3.* cosine formula: $a^2 = b^2 + c^2 - 2bc\cos A$

[Pg. 16, Trigonometry of the triangle

$$a = \sqrt{(c\cos A - b)^2 + (c\sin A - 0)^2}$$

using the distance formula

$$a^{2} = c^{2} \cos^{2} A - 2bc \cos A + b^{2} + c^{2} \sin^{2} A$$


$$a^2 = b^2 + c^2(\cos^2 A + \sin^2 A) - 2bc\cos A$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$as \cos^2 A + \sin^2 A = 1$$

4.* $\cos(A-B) = \cos A \cos B + \sin A \sin B$

[Pg. 14, Compound angle formulae]

Find the distance between p and q in two different ways and equate the answers

$$|pq|^2 = 1^2 + 1^2 - 2(1)(1)\cos(A - B)$$
 using cos ine formula, $a^2 = b^2 + c^2 - 2bc\cos A$

$$|pq|^2 = 2 - 2\cos(A - B)$$

$$|pq|^2 = 2 - 2\cos(A - B)$$

$$|pq| = \sqrt{(\cos A - \cos B)^2 + (\sin A - \sin B)^2}$$
 using distance formula

$$|pq|^2 = \cos^2 A - 2\cos A\cos B + \cos^2 B + \sin^2 A - 2\sin A\sin B + \sin^2 B$$

$$|pq|^2 = 2 - 2\cos A\cos B - 2\sin A\sin B$$

Equating both:

$$2-2\cos(A-B) = 2-2\cos A\cos B - 2\sin A\sin B$$

$$-2\cos(A-B) = -2\cos A\cos B - 2\sin A\sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

5.*	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	[Pg. 14, Compound angle formulae]
	$\cos(A - B) = \cos A \cos B + \sin A \sin B$	using formula 4
	$\cos(A - (-B)) = \cos A \cos(-B) + \sin A \sin(-B)$	changing B to $-B$
	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	as $cos(-B) = cos B$ and $sin(-B) = -sin B$

$$6.* \qquad \cos 2A = \cos^2 A - \sin^2 A$$

[Pg. 14, Double angle formulae]

$$cos(A + B) = cos A cos B - sin A sin B$$
 using formula 5
 $cos(A + A) = cos A cos A - sin A sin A$ changing B to A
 $cos 2A = cos^2 A - sin^2 A$

7.*
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
 [Pg. 14, Compound angle formulae]
$$\sin(A+B) = \cos[90^{\circ} - (A+B)]$$
 using complementary angles, $\sin \theta = \cos(90^{\circ} - \theta)$

$$= \cos[90^{\circ} - A - B]$$

$$= \cos[(90^{\circ} - A) - B]$$

$$= \cos(90^{\circ} - A) \cos B + \sin(90^{\circ} - A) \sin B$$
 using formula 4, $\cos(A-B) = \cos A \cos B + \cos A \cos B + \cos A \sin B$

9.*
$$\tan(A+B) = \frac{\tan A + \tan B}{1 + \tan A \tan B}$$

$$[Pg. 14, Compound angle formulae]$$

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}$$

$$= \frac{\sin A \sin B}{\cos A \cos B}$$

$$= \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
dividing everywhere by $\cos A \cos B$