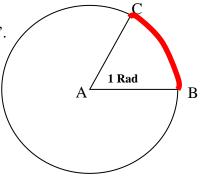
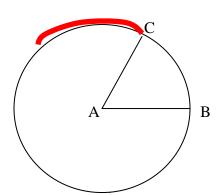

Radian Measure – Introduction Activity Sheet 1

- 1) Construct a circle whose radius is equal to the length of the piece of string given.
- 2) Draw in the radius and label it AB as shown.


3) Using the string, place one end of it at B and lay it out on the circumference. Mark C at the end of the string.

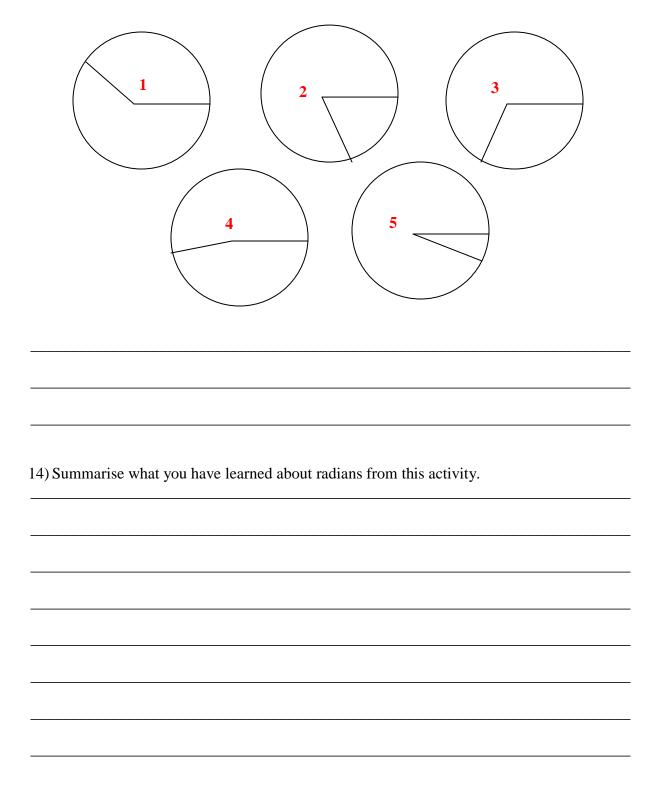
4) Join point A to point C.

The angle created in the centre of the circle is called "1 Radian".


NOTE: Activities 1 to 4 show how to **construct** an angle of size 1 radian

5) Using a protractor measure (and write down) the approximate size of this radian in degrees.

Approximate size of 1 radian in degrees =


6) Using the string **on the circumference** repeat step 4 above until the entire circumference has been covered.

•		cle
b) Estimate how many r	adians are in a semi-ci	ircle
ite down, in your own wo	ords, what you understa	and by the phrase "An angle o
nplete the following table	e using circles drawn	hy the class
Circle	Radius	Estimation of 1 radian
Circle 1 *		
Circle 2		
Circle 3		
Circle 4		
Circle 4 cle you constructed at que	estion 1 above	
cle you constructed at que		41
cle you constructed at que on the table above, what a		the radius of a circle have on t
cle you constructed at que		the radius of a circle have on t

		rom analysing the work so far make a connection between the number of radians in a full e and the circumference.
arc		θ is an angle, measured in radians, derive a formula connecting θ , (L) the length of the the (r) radius.
	11)	Using the identity generated in the previous question: (a) How many radians are in a full circle correct to two decimal places ?(b) Show that π radians = 180°
		(c) How many radians are in a semi-circle, correct to two decimal places?

13) Which of the following angles 1, 2, 3, 4 or 5 represent an angle of approximately 4 radians. Explain your answer.

