Project Maths Workshop 4

Name: \qquad

School: $\underline{ }$

Maths
Development Team

WS4.1 Notes

WS4.2 Key Outcomes and Words

- identify patterns and describe different situations using tables, graphs, words and formulae
- predict
- generalise in words and symbols
- justify
- relationship
- start amount: from a table
- constant rate of change: from a table
- a variable
- inputs and outputs
- linear graph
- start amount on graph: y - intercept
- constant rate of change on graph: called slope
- parallel lines \leftrightarrow same slope \leftrightarrow same rate of change
- constant rate of change characterises a linear function
- change column in table shows constant increasing rate of change
- formula
- start amount and slope/ rate of change also observable from formula
- $y=m x$ or $y=m x+c$ or $y=c+m x$
- compare and contrast
- steepness of slope reflects the rate of change
- slope: rise over run
- intersection
- common value
- increasing rate of change: positive slope
- decreasing rate of change: negative slope
- quadratic relationships:
- story / diagram
- table: first change varies
second change constant
- graph
- exponential relationships:
- story
- table: first change develops in a ratio
- graph

A full treatment of this topic is to be found in: "A Functions based approach to Algebra" available on http:// www. projectmaths.ie.

WS4.3 Student Activity 1B (Extract from Teaching \& Leaming Plan on Pattems)

Represent this repeating pattern - yellow, black, green, yellow, black, green - by building it with blocks or colouring it in on a number strip or drawing a table or in any other suitable way.

1	2	3	4	5	6	7	8	9	10

1. List the numbers of the first 3 yellow blocks. Is there a pattern in these numbers?
\qquad
2. List the numbers of the first 3 black blocks. Is there a pattern in these numbers?
3. List the numbers of the first 3 green blocks. Is there a pattern in these numbers?
4. What colour is the 6th block?
5. What colour is the 18th block?
6. What colour is the 25th block?
7. What colour is the 13th block?
8. What colour will the 100th block be in the sequence?
9. What colour will the 500th block be in this sequence?
10. Explain how you found your answers to questions 8 and 9 .
\qquad
\qquad
\qquad
\qquad
11. What rule could you use to work out the position number of any of the (i) yellow blocks, (ii) black blocks, (iii) green blocks?

Student Activity

Using pencil label axes clearly draw a graph of your first sunflower. Using a different colour pencil draw a graph of the second sunflower.

Sunflower A			
Starting height 3 cm and grows 2 cm per day			
each day afterwards			

Sunflower B Starting height each day and grows 2 enterwards			
Time/d	Height/cm		

When you have completed the table and drawn the graph of your first sunflower answer the following questions:

1. What values are varying?

Does one depend on the other?
Explain.
2. Identify the starting height in the table.

What time does it correspond to?
Where is the starting height on the graph?
3. Identify the rate of change of growth with time in the table.

Use the same reasoning to identify it in the graph.
4. What values are staying the same?

After you have the table and graph of your second sunflower completed answer the following:
5. Predict the height of each sunflower on day 9 , if they continue to grow at the same rate each day. Can you think of more than one way to do this?
6. Express in words the relationship between the height of each sunflower on any day, its starting height, its rate of growth and the time in days elapsed since its starting height.
7. Express the above relationships in symbols.

Student Activity
Using pencil label axes clearly draw a graph of your first sunflower. Using a different colour pencil draw a graph of the second sunflower.

Sunflower B			
Starting height 6 cm and grows 2 cm per day			
each day afterwards			

Sunflower C

Starting height 6 cm and grows 3 cm per day each day afterwards

Time/d	Height/cm		

When you have completed the table and drawn the graph of your first sunflower answer the following questions:

1. What values are varying?

Does one depend on the other?
Explain.
2. Identify the starting height in the table.

What time does it correspond to?
Where is the starting height on the graph?
3. Identify the rate of change of growth with time in the table.

Use the same reasoning to identify it in the graph.
4. What values are staying the same?

After you have the table and graph of your second sunflower completed answer the following:
5. Predict the height of each sunflower on day 9 , if they continue to grow at the same rate each day. Can you think of more than one way to do this?
6. Express in words the relationship between the height of each sunflower on any day, its starting height, its rate of growth and the time in days elapsed since its starting height.
7. Express the above relationships in symbols.

Student Activity

Using pencil label axes clearly draw a graph of your first sunflower. Using a different colour pencil draw a graph of the second sunflower.

Sunflower C Starting height 6 cm and grows 3 cm per day each day afterwards			
Time/d	Height/cm		

Sunflower D

Starting height 8 cm and grows 2 cm per day each day afterwards

Time/d	Height/cm		

When you have completed the table and drawn the graph of your first sunflower answer the following questions:

1. What values are varying?

Does one depend on the other?
Explain.
2. Identify the starting height in the table.

What time does it correspond to?
Where is the starting height on the graph?
3. Identify the rate of change of growth with time in the table.

Use the same reasoning to identify it in the graph.
4. What values are staying the same?

After you have the table and graph of your second sunflower completed answer the following:
5. Predict the height of each sunflower on day 9 , if they continue to grow at the same rate each day. Can you think of more than one way to do this?
6. Express in words the relationship between the height of each sunflower on any day, its starting height, its rate of growth and the time in days elapsed since its starting height.
7. Express the above relationships in symbols.

WS4.9 Contents of "A function based approach to algebra"

Introduction and unit learning outcomes
Linear function investigations
Proportional versus non proportional
Quadratic function Investigations
Exponential function Investigations
Inverse proportion investigations
Cubic function investigations
Appendix - notes and some solutions

WS4.10 Bus Problem

WS4.11 Bath Problem
A. Relaxes in bath.
C. Cold tap turned off, gets undressed.

D. Gets into bath.
G. Hot and cold taps turned on.

WS4.12 Resources available for Strands 1 and 2

Please note a more comprehensive document is to be found on http:// www. projectmaths.ie

Have you...

...registered for Census at School and have your students inputted their data?
[http://www.censusatschool.ie]
...attended the modular course for ICT for Strands 1 and 2 or accessed the resources for the same on the website? [http:// www. projectmaths. ie]
...attended the modular course for content for Strand 1 or accessed the resources for the same on the website? [http:// www. projectmaths.ie]
...read the Bridging Document for Mathematics produced by the NCCA and shown in Workshop 3? [http:// www.ncca.ie/ projectmaths]
...printed the Guide to Axioms, Theorems and Constructions for all levels?
[http:// www. projectmaths.ie]
...used the Student's CD with the Student Activities in class? [http:// www.projectmaths.ie]
...given your students a copy of the Student's CD?
...accessed the Leaving Cert. 2010 Sample Papers? [http:// www.examinations.ie]
...accessed the Leaving Cert. 2010 Project Maths Papers? [http:// www.examinations.ie]
...accessed the Leaving Cert. 2011 Sample Papers? [http:// www.examinations.ie]
...accessed the J unior Cert. 2011 Sample Papers? [http:// www.examinations.ie]
...accessed the Pre-Leaving Cert. 2010 papers? [http:// www.ncca.ie/ projectmaths]
...used any of the Teaching and Learning plans in class? [http:www.projectmaths.ie]
...read the Report on the Trialling of the Sample Paper? [http:// www.examinations.ie]
...accessed the NCCA Student Resource Materials? [http:// www.ncca.ie/ proj ectmaths]
...used any of the Teacher Handbooks? [http:// www.projectmaths.ie]
...shared more resources with the rest of the teachers in your maths team in recent months?
...completed $1 / 4,1 / 2,3 / 4$, or all of the Common Introductory Course? (J C syllabus pages 23 and 24)
...noticed that Paper 2 is changing for your current $1^{\text {st }}$ years in 2013?
...noticed that Paper 2 is changing for your current $5^{\text {th }}$ years in 2012?
...got your students to use concrete resources (e.g. unifix cubes, dice, geometry set, geostrips, clinometers etc.) more often in recent months?
...used the search engine on the Project Maths website? [http:// www. projectmaths.ie]
...searched the internet for ideas on specific topics?
...copies of the syllabuses?

