

The Common Introductory Course

The CIC is only intended as an introduction. For most students they will achieve more than the CIC in First Year. It's desirable that students will have done their basic algebra skills and equations by the end of First Year.

1. Why is it important to do "Patterns" before algebraic skills?

- It's all about the variable

2. Unknowns: Solving Equations (Teaching \& Learning Plan)
3. Addressing common misconceptions in algebra
4. Factors
5. Graph Matching Activity
6. Syllabus Review

1

```
y=mse}+
```

Traditionally, we may have introduced algebra something like this.......

$4 a$

$+$
3b

t/d
h/cm

- Sart Airsunt
- Variables
- Lurctan: rate of change

- Made a formula to describe the pattern

Once a variable is understood as a varying quantity, the Money Box Problem can then be used to introduce the concept of an unknown

The formula/rule for John's savings in his money box was: $\mathbf{a}=\mathbf{3 + 2 d}$

Question: For how many days did John need to save his pocket money in order to accumulate $€ 42$ for a video game?

Consolidate the idea of Equality

Projectmaths.ie/Teachers/Strand 3

Useful

methodology of
Stabilisers for getting started!

3

What are some of the misconceptions that students make with their algebra skills?

- Numbers and letters
- Displaying expressions
- Understanding that only like terms can be added or subtracted
- Multiplying and dividing in algebra
- Order of operations
- Factorising

$4 a+5 b+2 c+6$

$$
4(5)+5(2)+2(8)+6
$$

$$
=52
$$

1

x
$2 x$
x^{2}

$$
3 x^{2}
$$

- $2 x^{2}+3 x+5$

Draw the following areas:
$x, \quad y, \quad 2 x, \quad x^{2}, \quad 4 x^{2}, \quad 2(x+y), \quad 2 x+2 y$
where $x \neq y$

Question: Is $2(x+y)=2 x+2 y$? Discuss.
Question: Is $2 x \neq x^{2}$ always, sometimes or never?

- $2 x \neq x^{2}$, except when $x=2$
- $2(x+y)=2 x+2 y$
- They are comfortable that $2 x+2 y$ is an expression that does not need any more work. $2 x+2 y$ can represent a finished answer.

$(x+3)^{2} \neq x^{2}+3^{2}$

10
1 पा1101!

$$
\begin{array}{rlrl}
\text { Total Area } & =10 \times 10+10 \times 4+2 \times 10+2 \times 4 & \text { Total Area } & =100+40+20+8 \\
& =100+40+20+8 & & \\
& =168 \\
& =168
\end{array}
$$

Multiply $(x+2)$ by $(x+4)$

$$
\begin{aligned}
& =(x+2)(x+4) \\
& =x^{2}+4 x+2 x+8 \\
& =x^{2}+6 x+8
\end{aligned}
$$

Using the Distributive Law

$$
\begin{aligned}
= & (x+2)(x+4) \\
& x(\underline{x+4})+2(x+4) \\
= & x^{2}+4 x+2 x+8 \\
= & x^{2}+6 x+8
\end{aligned}
$$

\ddagger Fill in the anowers to the following multiplication sums using array models

Find the answers to the following multiplication sums using the Distributive Law, then check your answer using an ares model.

Excerpts from these
Worksheets on Page 23

1. $27 \times 41=$

	$=$
4.	$=(x+y)(x+y)$
	$=$
	$=$

I Solution Strategies for Multiplication

Worksheets with Teachers Notes

> Projectmaths.ie/Teachers/ Strand 3/Junior Cycle/ Supplementary material

$(x+3)^{2} \neq x^{2}+3^{2}$

Multiply $(x-2)\left(x^{2}-2 x+3\right)$

$$
\begin{aligned}
\text { Total Area } & =x^{3}-2 x^{2}-2 x^{2}+3 x+4 x-6 \\
& =x^{3}-4 x^{2}+7 x-6
\end{aligned}
$$

Divide $x^{2}+5 x+6$ by $x+2$

Check

$$
3 x+2 x=5 x
$$

2005

$$
(x-p)^{2}=x^{2}-2 x p+p^{2}
$$

(a)

$$
x^{3}+0 x^{2}+q x+r
$$

$$
\begin{array}{rlrl}
-4 p^{2} x+p^{2} x & =q x & 2 p\left(p^{2}\right)=r \\
-3 p^{2} x & =q x & 2 p^{3} & =r
\end{array}
$$

$$
\begin{aligned}
& 27 r^{2}+4 q^{3} \\
& 27\left(2 p^{3}\right)^{2}+4\left(-3 p^{2}\right)^{3} \\
& 27\left(4 p^{6}\right)+4\left(-27 p^{6}\right)=0
\end{aligned}
$$

WS5. 19
Order of Operations

4. Another operation to consider is powers. Match the numerical expressions with their
corresponding area models by placing A, B, C or D into the box.

Page 24

Misconception:
Order of
Operations

$$
\text { (iv) } \begin{aligned}
x^{2}+y^{2} & \square \\
3 \times y^{2} & \square \\
(x \times y)^{2} & \square \\
(x+y)^{2} & \square
\end{aligned}
$$

4 Methods of Factorising

1. Taking Out a Common Factor
2. Grouping
3. Quadratics: $a x^{2}+b x+c$

$$
a x^{2}+b x
$$

$$
a x^{2}+c
$$

a, b, c may be equal
4. Difference of Two Squares

Factorise $3 x+6$

The factors are $3(x+2)$

Page 27

Factorise $a b-b c+d a-d c$

The factors are $(b+d)(a-c)$

Page 27

Factorised

SOLVE $x^{2}-5 x \Theta(4)=0$

而

$$
(x + 2 \longdiv { (x - 7) = 0 }
$$

$$
\begin{array}{lc}
(x+2)=0 & (x-7)=0 \\
x=-2 & x=7
\end{array}
$$

Project

Factorise $\quad x^{2}-y^{2}$

$\longleftarrow x-y \rightarrow$

y^{2}

Area of $\mathrm{A}=y(x-y)$
Area of $B=x(x-y)$
Area of $\mathrm{A}+\mathrm{B}=y(x-y)+x(x-y)$

$$
=(x-y)(x+y)
$$

Area of $\mathrm{A}=3(10-3)$
Area of $B=10(10-3)$
Area of $\mathrm{A}+\mathrm{B}=3(10-3)+10(10-3)$

$$
=(10-3)(10+3)=91
$$

Can you draw a model for the difference of two cubes?

Student's CD Demo of the Difference of Two Squares Quiz

Syllabus:
"The relationships based approach to learning algebra should culminate in students having a deep
understanding of algebra which allows easy movement between story, table, graph and equation."

Learning outcomes

Students should be able to:

- investigate models such as decomposition, skip counting, arranging items in arrays and accumulating groups of equal size to make sense of the operations of addition, subtraction, multiplication and division, in
\mathbf{N} where the answer is in \mathbf{N}
- investigate the properties of arithmetic: commutative associative and distributive laws and the relationships between them including the inverse operation
- appreciate the order of operations, including the use of brackets
- investigate models such as the number line to illustrate the operations of addition, subtraction, multiplication and division in \mathbf{Z}

- generalise and articulate observations of arithmetic operations
- investigate models to help think about the operations of addition, subtraction, multiplication and division of rational numbers

- consolidate the idea that equality is a relationship in which two mathematical expressions hold the same value

Learning outcomes

Students should be able to:

- analyse solution strategies to problems
- engage with the idea of mathematical proof
- calculate percentages
- use the equivalence of fractions, decimals and percentages to compare proportions
- consolidate their understanding and their learning of
factors, multiples and prime numbers in \mathbf{N}
- consolidate their understanding of the relationship between ratio and proportion
- check a result by considering whether it i
 order of magnitude
- check a result by working the problem backwards
- justify approximations and estimates of calculations
- apply the rules for indices (where $a \in Z, p, q \in N$):
- $a^{p} a^{q}=a^{p+q}$

$=a^{p-q}, \quad p>q$
 $\left.{ }^{p}\right)^{q}=a^{p q}$

stiand 3

At all three levels (HL, OL, FL), Section B questions will be of a problem-solving nature.

New Problem Solving Tab on Projectmaths.ie

Page of Problems Page 26

1. Why is it important to do "Patterns" before algebraic skills?

- It's all about the variable

2. Unknowns: Solving Equations (Teaching \& Learning Plan)
3. Addressing common misconceptions in algebra
4. Factors
5. Graph Matching Activity
6. Syllabus Review
