Below are two similar triangles.

(i) A and B are the points (5, 5) and (10.8, 14.4) as shown. |AC| is 15.5 cm. Name the co-ordinates of C.

)

Answer:	С (,
---------	-----	---

Using the length formula, verify that |AC| is 15.5 cm. (ii)

D and E are the points (25, 10) and (36.6, 28.8) as shown. |DF| is 31 cm. (iii) Name the co-ordinates of F.

Answer: |F () ,

(iv) Show using figure 6.1 that the scale factor, k, is 2.

(v) How would you describe the image that is formed?

Explain your answer by referring to the scale factor, *k*.

(vi) Using the information on figure 6.1 find the perpendicular height of each triangle from their horizontal base.

	Δ.	ABC	C P€	erp	enc	dicu	ulaı	r he	eigł	nt =	=			$\triangle l$	DEF	Ρe	erp	enc	licu	ılaı	he	eigł	nt=				
	Wh	at	do	yo	u n	oti	ice	?																		 	

(vii) By using a ruler/straight edge, find the centre of enlargement, P, on figure 6.1 page 10. Show construction rays. Name the coordinates of the point P.

Answer:	Р(,)

(viii) By using an alternative method to the one above, find the coordinates of the centre of enlargement.

Would it be possible to **always** use this alternative method for finding the centre of enlargement? Explain.

(ix) Find $|\angle ACB|$ using trigonometry.

(x) Is there an angle bigger than $|\angle ACB|$ in $\triangle ABC$? Give a reason for your answer. (The use of protractors is not allowed.)

(xi) Write, in the space provided, different formulae for finding the area of a triangle.

Formula 1:															
Formula 2:															
Formula 3:															

(xii) Find the area of $\triangle ABC$ using formula 1.

(xiii) Find the area of $\triangle ABC$ by using formula 2.

(xiv) Find the area of $\triangle ABC$ by using formula 3.

(xv) Find the area of $\triangle DEF$.

(xvi) Using the diagram below construct the centroid (S) of $\triangle ABC$ and construct the centroid (T) of $\triangle DEF$.

(xvii) The centroid of a triangle can be calculated using the following formula:

$$\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \bigg).$$

Calculate the centroid for each triangle, correct to 1 d.p. Centroid of $\triangle DEF$: T(Centroid of $\triangle ABC$: S()

(xviii) If 2 triangles are similar, then the ratio of 2 corresponding lengths is equal to the scale factor. Show that this statement is true by calculating |AS| and |DT|, correct to 1 d.p.

,

)

,

(xix) A special property of the centroid of a triangle is that it will **always** divide each median into two segments whose lengths are in the ratio 2:1, with the longest segment nearest the vertex.

Note: The median of a triangle is a line joining a vertex to the midpoint of the opposing line.

Show that the special property mentioned above is true for the median [BM] in $\triangle ABC$.

							 			 				 _		 		
	-												 	 		 		
<u> </u>				 	 		 	 	 	 	 		 	 	 	 		
-	-								-					 -				
<u> </u>	-						 		 	 	 		 	 		 		

(xx) *LC(HL) Verify, using the above property, that the centroid of a triangle formula is as follows:

(xxi) *LC (HL) Show that point A (5, 5) divides [PD] internally in the ratio 1:1.

Do you notice any other points dividing a line segment in the ratio 1:1? If so, name them.