EXPLORING NUMBERS IN CONTEXT

Days in the year = 365

Hours in the year?

Minutes in the year?

Seconds in the year?

I have €1 to invest for a year and a bank offered me a whopping 100% interest?

What do I expect to get?

Flip chart: Define variables

My money was compounded Every six months? Every three months?

My money was compounded Every six months? Every three months? Every month? Every day? Every hour.....

How often interest is compounded	Final Value F	
Yearly	$F = 1(1+1)^2$	= 2.0
Every 6 months	$F = 1\left(1 + \frac{1}{2}\right)^2$	= 2.25
Every 3 months	$F = 1\left(1 + \frac{1}{4}\right)^4$	= 2.44140625
Every month	$F = 1\left(1 + \frac{1}{12}\right)^{12}$	= 2.61303529
Every week	$F = 1\left(1 + \frac{1}{52}\right)^{52}$	= 2.69259695
Every day	$F = 1 \left(1 + \frac{1}{365} \right)^{365}$	= 2.71456748
Every hour	$F = 1 \left(1 + \frac{1}{365(24)} \right)^{365(24)}$	= 2.71812669
Every minute	$F = 1 \left(1 + \frac{1}{365(24)(60)} \right)^{365(24)(60)}$	= 2.71827923
Every second	$F = 1 \left(1 + \frac{1}{365(24)(60)(60)} \right)^{365(24)(60)(60)}$	= 2.71828162

Let's generalise If we divide the year into n compounding periods, how do we find F?						
Yearly	$F = 1(1+1)^2$	= 2.0				
Every 6 months	$F = 1\left(1 + \frac{1}{2}\right)^2$	= 2.25				
Every 3 months	$F = 1\left(1 + \frac{1}{4}\right)^4$	= 2.44140625				
Every month	$\left(\begin{array}{c} 1 \end{array} \right)^n$	2.61303529				
Every week	$F = 1 \left(\begin{array}{c} 1 + - \\ n \end{array} \right)$	2.69259695				
Every day	$F = 1\left(1 + \frac{1}{365}\right)$	= 2.71456748				
Every hour	Every hour $F = 1\left(1 + \frac{1}{8760}\right)^{8760}$					
Every minute	minute $F = 1\left(1 + \frac{1}{525600}\right)^{525600}$					
Every second	$F = 1 \left(1 + \frac{1}{31536000} \right)^{31536000}$	= 2.71828162				

Compounding continued for even smaller compounding periods?

It looks as if any further increases in number of compounding periods will hardly affect the outcome – **the changes will occur in less and less significant digits**.

If we start with €1 and compound continuously for 1 year at 100% we get € e.

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

If we start with €1 and compound continuously for 1 year at 100% we get €e

If we start with €1 and compound continuously for 1 year at 100% we get € e

If we start with €1 and compound continuously for 1 year at 100% we get €e

e is not just a number.....

- > e is the base rate of growth shared by all continually growing processes.
- e shows up whenever systems grow exponentially and continuously: population, radioactive decay, interest calculations, and more.
- Even jagged systems that don't grow smoothly can be approximated by e.

e

 $N = N_0 e^{-\lambda t}$

Where we find e.....

$$y = \frac{e^{ax} + e^{-ax}}{2a}$$

where *a* is a constant

First 10-digit prime found in consecutive digits of e

The billboard shown above is part of a **recruiting campaing of Google**. I am far from smart enough to solve this problem, and it this moment I haven't got any plans to move to the United States. But I am interested in the solution, so for the moment I wait until somebody has solved this problem, and publishes it on internet. After that, I will be able to find it throught **Google**.

[Update 2004.07.14]: Google already gives some answers. The best discussion about the answer -7427466391.com- is found at the FogCreek forum.

First 10-digit prime found in consecutive digits of e

Mathematical Model for Growth

In the formula $F = P(1+i)^{t}$, the base rate of growth is (1+i)and occurs at discrete intervals.

In natural growth, growth occurs continuously and the base rate of growth is e.

We can approximate discrete growth using e.

The interest rate was less than \Box The amount invested wasn't $\in 1$?

The investment period was more than 1 year?

Other interest rates, times, principals......

The final value F, when €1 is invested at 100% continuously compounded interest is

$$\boldsymbol{F} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \boldsymbol{e}$$

If the interest rate is $i \neq 1$, (still continuous compounding) and t = 1 year,

$$\boldsymbol{F} = \lim_{\boldsymbol{n} \to \infty} \left(1 + \frac{\boldsymbol{i}}{\boldsymbol{n}} \right)^{\boldsymbol{n}}$$

Let
$$\frac{i}{n} = \frac{1}{x} \implies n = xi$$

As
$$n \to \infty, x \to \infty$$

If the time is t years: If the principal is $\in P$:

$$\Rightarrow \mathbf{F} = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{xi} = \left(\lim_{x \to \infty} \left(\left(1 + \frac{1}{x} \right)^x \right)^i \right) = \mathbf{e}^i$$

$$F = (e^{i})^{t} = e^{it}$$
$$F = Pe^{it}$$

All continuously growing systems are a scaled version of a common rate..

JC & LC Syllabus: All Levels

Leaving Certificate: Strand 3 Number

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
3.1 Number systems	 recognise irrational numbers and appreciate that R_≠Q revisit the operations of addition, multiplication, subtraction and division in the following domains: N of natural numbers Z of integers Q of rational numbers R of real numbers and represent these numbers on a number line appreciate that processes can generate sequences of numbers or objects Investigate patterns among these sequences use patterns to continue the sequence generate rules/formulae from those patterns 	 work with irrational numbers investigate the operations of addition, multiplication, subtraction and division with complex numbers C in rectangular form <i>a+ib</i> illustrate complex numbers on an Argand diagram interpret the modulus as distance from the origin on an Argand diagram and calculate the complex conjugate generalise and explain patterns and relationships in algebraic form recognise whether a sequence is arithmetic, geometric or neither find the sum to n terms of an arithmetic series express non-zero positive rational numbers in the form <i>a</i> x10ⁿ, where <i>n</i> ∈ Z and 1 ≤ <i>a</i> < 10 and perform arithmetic form 	 geometrically construct √2 and √3 prove that √2 is not rational calculate conjugates of sums and products of complex numbers verify and justify formulae from number patterns investigate geometric sequences and series prove by induction simple identities such as the sum of the first n natural numbers and the sum of a finite geometric series simple inequalities such as n! > 2ⁿ 2ⁿ > n² (n ≥ 4) (1+ x)ⁿ ≥ 1+nx (x > -1)

Stock take of problem solving outcomes and methodologies

Leaving Certificate: Strand 3 Number

3.1 Numbe

system

- recognise irrational numbers and appreciate that R≠Q
 revisit the operations of addition, multiplication, subtraction and division in the following domains:
 N of natural numbers
 Z of integers
 - **Q** of rational numbers
 - R of real numbers

and represent these numbers

- on a number line
- appreciate that processes can generate sequences of numbers or objects
- these sequences
- use patterns to continue the sequence

- work with irrational numbers investigate the operations of addition,
- multiplication, subtraction and division with complex numbers **C** in the form a+ib
- illustrate complex numbers on an Argand diagram
- interpret the modulus as distance
 from the origin on an Argand diagram
 and calculate the complex conjugate
- generalise and explain patterns and relationaries in algebraic form
 - recognise whether a sequence is arithmetic, geometric or neither find the sum to n terms of an
- express non-zero positive rational numbers in the form
 a x10ⁿ, where n ∈ Z and

arithmetic series

- geometrically construand √3
- calculate conjugates sums and products c complex numbers
- verify and justify form from number pattern
- investigate geometric sequences and serie
- prove by induction
 - simple identities si as the sum of the natural numbers a sum of a finite geo series
 - simple inequalities as
 n! > 2ⁿ
 - $2^n > n^2 \ (n \ge 4)$

Stock take of problem solving outcomes and methodologies

3.1 Number systems

Students

learn

about

Leaving Certificate: Strand 5 Number

Students learn about	Students working at FL should be able to	In addition, students working at OL should be able to	In addition, students working at HL should be able to
5.1 Functions	 recognise that a function assigns a unique output to a given input graph functions of the form ax where a ∈ Q, x ∈ R ax+b where a,b ∈ Q, x ∈ R ax²+bx + c where a, b, c ∈ Z, x ∈ R a2^x where a ∈ N, x ∈ R a3^x where a ∈ N, x ∈ R interpret equations of the form f(x) = g(x) as a comparison of the above functions use graphical methods to find approximate solutions to f(x) = 0 f(x) = 0 f(x) = g(x) where f(x) and g(x) are of the above form 	 form composite functions graph functions of the form ax³+bx² + cx+d where a,b,c,d∈Z, x∈R ab^x where a∈N, b, x∈R interpret equations of the form f(x) = g(x) as a comparison of the above functions use graphical methods to find approximate solutions to f(x) = 0 f(x) = k f(x) = g(x) where f(x) and g(x) are of the above form, or where graphs of f(x) and g(x) are provided investigate the concept of the limit of a function 	 recognise surjective, injective and bijective functions find the inverse of a bijective function given a graph of a function sketch the graph of its inverse express quadratic functions in complete square form use the complete square form of a quadratic function to find the roots and turning points sketch the function graph functions of the form ax²+bx + c where a,b,c ∈ Q, x ∈ R ab^x where a,b ∈ R logarithmic exponential trigonometric Interpret equations or the form f(x) = g(x) as a comparison of the above functions informally explore limits and continuity of functions

Leaving Certificate: Strand 5 Functions

• $a2^x$ where $a \in \mathbf{N}, x \in \mathbf{R}$

• $a3^x$ where $a \in \mathbf{N}, x \in \mathbf{R}$

- interpret equations of the form
 f(x) = g(x) as a comparison of the
 above functions
- use graphical methods to find approximate solutions to f(x) = 0

f(x) = k

f(x) = g(x)

where f(x) and g(x) are of the above form

- interpret equations of the form f(x) = g(x) as a comparison of the above functions
- use graphical methods to find approximate solutions to

f(x) = 0 f(x) = k f(x) = g(x)where f(x) and g(x) are of the above form or where graphs of f(x) and g(x) are

- provided
- investigate the concept of the limit of a function

 use the complete square form of a quadratic function to

- find the roots and turning points
- sketch the function
- graph functions of the form

• ax^2 +bx + c where $a, b, c \in \mathbf{Q}, x \in \mathbf{R}$

- ab^x where $a,b \in \mathbf{R}$
- logarithmic
- exponential

trigonometric

interpret equations of the form f(x) = g(x) as a comparison of the above functions