

How many?

Days in the year $=365$
Hours in the year?
Minutes in the year?
Seconds in the year?

what if?

I have $€ 1$ to invest for a year and a bank offered me a whopping 100% interest?

What do I expect to get?

Flip chart: Define variables

I have € 1 to invest for a year at100\% interest?

Problem Solving Strategies

1

1
$1(1+1)=1+1=2$

Every six months?

0.25

0.5
1

<

$$
1\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2}\right)=1+0.5+0.5+0.25=2.25
$$

what if?

My money was compounded Every six months? Every three months?

what if?

My money was compounded Every six months? Every three months?
Every month?
Every day?
Every hour.........

Problem Solving Strategies

How often interest is compounded	$F=1(1+1)^{2}$	$=2.0$
Yearly	$F=1\left(1+\frac{1}{2}\right)^{2}$	$=2.25$
Every 6 months	$F=1\left(1+\frac{1}{4}\right)^{4}$	$=2.44140625$
Every 3 months	$F=1\left(1+\frac{1}{12}\right)^{12}$	$=2.61303529$
Every month	$F=1\left(1+\frac{1}{52}\right)^{52}$	$=2.69259695$
Every week	$F=1\left(1+\frac{1}{365}\right)^{365}$	$=2.71456748$
Every day	$F=1\left(1+\frac{1}{365(24)}\right)^{365(24)}$	$=2.71812669$
Every hour	$F=1\left(1+\frac{1}{365(24)(60)}\right)^{365(24)(60)}$	$=2.71827923$
Every minute	$F=1\left(1+\frac{1}{365(24)(60)(60)}\right)^{365(24)(60)(60)}$	$=2.71828162$
Every second	F	

Let's generalise....... If we divide the year into n compounding periods, how do we find F?

Compounding continued for even smaller compounding periods?

It looks as if any further increases in number of compounding periods will hardly affect the outcome the changes will occur in less and less significant digits.
2.7
2.71
2.718
2.7182
2.71828
2.718281
2.7182818
2.71828182
2.718281828
2.7182818284 .

calculator

If we start with $€ 1$ and compound continuously for 1 year at 100% we get $€ e$.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\boldsymbol{e}
$$

If we start with $€ 1$ and compound continuously for 1 year at 100% we get $€ e$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\boldsymbol{e}
$$

If we start with $€ 1$ and compound continuously for 1 year at 100% we get $€$ e

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\boldsymbol{e}
$$

$$
\left(1+\frac{1}{n}\right)^{n}
$$

If we start with $€ 1$ and compound continuously for 1 year at 100% we get $€ e$

e is not just a number.

$>e$ is the base rate of growth shared by all continually growing processes.
>e shows up whenever systems grow exponentially and continuously: population, radioactive decay, interest calculations, and more.
$>$ Even jagged systems that don't grow smoothly can be approximated by e.

World Population Growth

$N=N_{0} e^{-\lambda t}$

Where we find e.......

First 10-digit prime found in consecutive digits of

The billboard shown above is part of a recruiting campaing of Google. I am far from smart enough to solve this problem, and it this moment I haven't got any plans to move to the United States. But I am interested in the solution, so for the moment I wait until somebody has solved this problem, and publishes it on internet. After that, I will be able to find it throught Google.
[Update 2004.07.14]: Google already gives some answers. The best discussion about the answer -7427466391.com- is found at the FogCreek forum.

First 10-digit prime found in consecutive digits of e

The natural exponential function

Mathematical Model for Growth

In the formula $\boldsymbol{F}=\boldsymbol{P}(1+\boldsymbol{i})^{t}$,
the base rate of growth is $(1+\boldsymbol{i})$
and occurs at discrete intervals.

In natural growth, growth occurs continuously and the base rate of growth is \boldsymbol{e}.

We can approximate discrete growth using e.

what if?

aThe interest rate was less than 100% ?
\square aThe amount invested wasn' $\dagger € 1$?
aThe investment period was more than 1 year?

Other interest rates, times, principals

The final value F , when $€ 1$ is invested at 100% continuously compounded interest is

$$
\boldsymbol{F}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\boldsymbol{e}
$$

If the interest rate is $\boldsymbol{i} \neq 1$, (still continuous compounding) and $\boldsymbol{t}=1$ year,

$$
\boldsymbol{F}=\lim _{n \rightarrow \infty}\left(1+\frac{\boldsymbol{i}}{\boldsymbol{n}}\right)^{n}
$$

$$
\text { Let } \frac{i}{n}=\frac{1}{x} \Rightarrow n=x i
$$

As $\boldsymbol{n} \rightarrow \infty, \boldsymbol{x} \rightarrow \infty$

$$
\Rightarrow \boldsymbol{F}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{\boldsymbol{x}}\right)^{x i}=\left(\lim _{x \rightarrow \infty}\left(\left(1+\frac{1}{\boldsymbol{x}}\right)^{x}\right)^{i}\right)=\boldsymbol{e}^{i}
$$

If the time is t years:

$$
\begin{aligned}
& \mid \boldsymbol{F}=\left(\boldsymbol{e}^{i}\right)^{t}=\boldsymbol{e}^{i t} \\
& \boldsymbol{F}=\boldsymbol{P} \boldsymbol{e}^{i t}
\end{aligned}
$$

All continuously growing systems are a scaled version of a common rate..

JC \& LC Syllabus: All Levels

Students learin about	Students should be able to
and problem solving sk"Its	- explore patterns and formulate conjectures - explain findings - justify conclusions - communicate mathematics verbally and in written form - apply their knowledge and skills to solve problems in familiar and unfamiliar contexts - analyse informaiton presented veivally and tuan sisale t it into minathematical form - devise, select and use appropriate mathematical models, formulae or techniques to process information and to draw relevant conclusions.

Leaving Certificate: Strand 3 Number

Students learn about	Students working at FL should be able to
$\mathbf{3 . 1}$	
Number systems	- recognise irrational numbers and appreciate that $\mathbf{R}_{\neq \mathbf{Q}}$
revisit the operations of	
addition, multiplication,	
subtraction and division in the	
following domains:	

- \mathbf{N} of natural numbers
- Z of integers
- Q of rational numbers
- \mathbf{R} of real numbers and represent these numbers on a number line
- appreciate that processes can generate sequences of numbers or objects
- investigate patterns among these sequences
- use patterns to continue the sequence
- generate rules/formulae from those patterns

In addition, students working at OL should be able to

- work with irrational numbers
- investigate the operations of addition, multiplication, subtraction and division with complex numbers \mathbf{C} in rectangular form $a+i b$
- illustrate complex numbers on an Argand diagram
- interpret the modulus as distance from the origin on an Argand diagram and calculate the complex conjugate
- generalise and explain patterns and relationships in algebraic form
- recognise whether a sequence is arithmetic, geometric or neither
- indo the sum to n terms or an arithmetic series
- express non-zero positive rational numbers in the form
$a \times 10^{n}$, where $n \in \mathbf{Z}$ and
$1 \leq a<10$ and perform arithmetic operations on numbers in this form

In addition, students working at HL should be able to

- geometrically construct $\sqrt{ } 2$ and $\sqrt{ } 3$
- prove that $\sqrt{ } 2$ is not rational
- calculate conjugates of sums and products of complex numbers
- verify and justify formulae from number patterns
- investigate geometric sequences and series
- prove by induction
- simple identities such as the sum of the first n natural numbers and the sum of a finite geometric series
- simple inequalities such as
$n!>2^{n}$
$2^{n}>n^{2}(n \geq 4)$
$(1+x)^{n} \geq 1+n_{x}(x>-1)$

Leaving Certificate: Strand 3 Number

Students

[^0] ,
complex numbers

- verify and justify form from number pattern
- investigate geometric sequences and serie
- prove by induction
- simple identities s as the sum of the natural numbers a sum of a finite gec series
- simple inequalities as
$n!>2^{n}$
$2^{n}>n^{2}(n \geq 4)$
- geometrically constru and $\sqrt{ } 3$
- calculate conjugates sums and products c $a+1 b$
- illustrate complex numbers on an Argand diagram
- interpret the modulus as distance from the origin on an Argand diagram and calculate the complex conjugate
- generalise and explain patterns and relationotips in algevianoform recognise whether a sequence is arithmetic, geometric or neither find the sum to n terms of an arithnmerinac
- express non-zero positive rational numbers in the form a $\times 10^{n}$, where $n \in \mathbf{Z}$ and

Leaving Certificate: Strand 5 Number

Students
 learn about
 Students working at FL should be able to

In addition, students working at OL should be able to

In addition, students working at HL should be able to

5.1 Functions

- recognise that a function assigns a unique output to a given input
- graph functions of the form
- $a x$ where $a \in \mathbf{Q}, x \in \mathbf{R}$
- $a x+b$ where $a, b \in \mathbf{Q}, x \in \mathbf{R}$
- $a x^{2}+b x+c$
where $a, b, c \in \mathbf{Z}, x \in \mathbf{R}$
- $a 2^{*}$ where $a \in \mathbf{N}, x \in \mathbf{R}$
- $a 3^{x}$ where $a \in \mathbf{N}, x \in \mathbf{R}$
- interpret equations of the form $f(x)=g(x)$ as a comparison of the above functions
- use graphical methods to find approximate solutions to
$f(x)=0$
$f(x)=k$
$f(x)=g(x)$
where $f(x)$ and $g(x)$ are of the above form
- form composite functions
- graph functions of the form
- $a x^{3}+b x^{2}+c x+d$ where $a, b, c, d \in \mathbf{Z}, x \in \mathbf{R}$
- $a b^{x}$ where $a \in \mathbf{N}, b, x \in \mathbf{R}$
- interpret equations of the form
$f(x)=g(x)$ as a comparison of the above functions
- use graphical methods to find approximate solutions to
$f(x)=0$
$f(x)=k$
$f(x)=g(x)$
where $f(x)$ and $g(x)$ are of the above form, or where graphs of $f(x)$ and $g(x)$ are provided
- investigate the concept of the limit of a function
- recognise surjective, injective and bijective functions
- find the inverse of a bijective function
- given a graph of a function sketch the graph of its inverse
- express quadratic functions in complete square form
- use the complete square form of a quadratic function to
- find the roots and turning points
- sketch the function
graph functions of the form
- $a x^{2}+b x+c$
where $a, b, c \in \mathbf{Q}, x \in \mathbf{R}$
- $a b^{x}$ where $a, b \in \mathbf{R}$
- logarithmic
- exponential
- trigonometric
- intierpret equamons or ine iorm $f(x)=g(x)$ as a comparison of the above functions
- informally explore limits and continuity of functions

Leaving Certificate: Strand 5 Functions

$x \in \pi$

- $a 2^{x}$ where $a \in N, x \in R$
- $a 3^{x}$ where $a \in N, x \in R$
- interpret equations of the form $f(x)=g(x)$ as a comparison of the above functions
- use graphical methods to find approximate solutions to
$f(x)=0$
$f(x)=k$
$f(x)=g(x)$
where $f(x)$ and $g(x)$ are of the cove form
- interpret equations of the form $f(x)=g(x)$ as a comparison of the above functions
- use graphical methods to find approximate solutions to
$f(x)=0$
$f(x)=k$
$f(x)=g(x)$
where $f(x)$ and $g(x)$ are of the above form or where graphs of $f(x)$ and $g(x)$ are providad atrignnamatric
- investigate the concept of the limit of a function
- use the complete square form of a quadratic function to
- find the roots and turning points
- sketch the function
- graph functions of the form
- $a x^{2}+b x+c$ where $a, b, c \in \boldsymbol{Q}, x \in \boldsymbol{R}$
- $a b^{x}$ where $a, b \in \mathbf{R}$
- logarthmic
- exponential
- interpret equations of the form
$f(x)=g(x)$ as a comparison of the above functions

[^0]: s

