Exploration of Exponential Functions

Monday 11 Ja

mng 9:30-12:00

Prior Knowledge

If a is any positive number and x is any integer, then $a^x > 0$

e.g.
$$3^4 = 81 > 0$$

 $4^{-2} = \frac{1}{4^2} = \frac{1}{16} > 0$

- Understand and apply the laws of indices
- Functions

The exponent says how many of the base are being multiplied together.

John has €10 to buy bars of chocolate which cost €2 each.

John has $\in 10$ to buy bars of chocolate which cost $\in 2$ each. Let x be the number of chocolate bars we buy and y be the amount of money left. The relationship between x and y is shown below

1. Each value of x corresponds to values of y

&

2. Each value of x corresponds to only one value of y

y is a function of x if both of these 2 conditions are true 1.Each value of x corresponds to values of y

&

1.Each value of x corresponds to values of y

2.Each value of x corresponds to only one value of y

Fails condition 2

2

Fails both conditions

3

4

1.Each value of x corresponds to values of y

&

2.Each value of x corresponds to only one value of y

Basic Technique

Read information from a graph

e.g. the figure shows the graph of $p(x) = x^2 + 1$ and $q(x) = x^2 - 2$ in the domain $-4 \le x \le 4$, $x \in \mathbb{R}$

Discuss what are the similarities and the differences

Basic Technique

Read information from a graph

e.g. the figure shows the graph of $P(x) = x^2 + 1$

- The graph has no x- intercepts
- For $x \ge 0$, $x^2 + 1$ increases as x increases
- For $x \le 0$, $x^2 + 1$ increases as x decreases

Exponential Functions

Learning Outcomes

After completing this session you will be able to:

- 1. Understand the properties of exponential functions
- 2. Learn the features of their graphs

Organisation

 Groups 1& 5
 Complete Section A Student Activity 1
 page 4 - 5 Groups 3, 7 & 9
 Complete Section B
 Student Activity 1
 page 9 - 10

 Groups 2 & 6 Complete Section A Student Activity 2 page 6 - 7 Groups 4,8 & 10
 Complete Section B
 Student Activity 2
 page 11 - 12

Groups 1& 5
 Section A
 Student Activity 1
 page 4 - 5

 Groups 2 & 6 Section A Student Activity 2 page 6 - 7

Q1	$f(x) = 2^x$		$\mathbf{g}(x) = 3^x$
(i) Base		Base	
(ii) Exponent		Exponent	
(iii) Varying		Varying	
(iv) Constant		Constant	
Q2 Domain		Domain	

Q1	$f(x) = 2^x$		$\mathbf{g}(x) = 3^x$
(i) Base	2	Base	3
(ii) Exponent	X	Exponent	X
(iii) Varying	x & f(x)	Varying	x & g(x)
(iv) Constant	2	Constant	3
Q2 Domain	x ∈ R	Domain	x ∈ R

X	(2) ^X	<i>f(x)</i>
-4	(2)-4	1/16
-3	(2)-3	1/8
-2	(2)-2	1/4
-1	(2)-1	1/2
0	(2)0	1
1	(2) ¹	2
2	(2) ²	3
3	(2) ³	8
4	(2)4	16

x	(3) ^X	<i>g(x)</i>
-4	(3)-4	1/81
-3	(3) ⁻³	1/27
-2	(3)-2	1/9
-1	(3)-1	1/3
0	(3) ⁰	1
1	(3) ¹	3
2	(3) ²	9
3	(3) ³	27
4	(3)4	81

Groups 1, 5, 2 & 6

Questions 4 & 5

4,5,6 & 7

Questions 4 & 5

Groups 3, 7 & 9
 Section B
 Student Activity 1
 page 9 - 10

Groups 4,8 & 10
 Section B
 Student Activity 2
 page 11 - 12

x	$\left(\frac{1}{2}\right)^{x}$	f(x)
-4	$\left(\frac{1}{2}\right)^{-4}$ $\left(\frac{1}{2}\right)^{-3}$	16
-4 -3	$\left(\frac{1}{2}\right)^{-3}$	8
-2	$\left(\frac{1}{2}\right)^{-2}$	4
-1	$\left(\frac{1}{2}\right)^{-1}$	2
0	$\left(\frac{1}{2}\right)^0$	1
1	$\left(\frac{1}{2}\right)^1$	$\frac{1}{2}$
2	$\left(\frac{1}{2}\right)^{1}$ $\left(\frac{1}{2}\right)^{2}$	$\frac{1}{4}$
3	$\left(\frac{1}{2}\right)^3$	$ \frac{\frac{1}{2}}{\frac{1}{4}} $ $ \frac{1}{\frac{1}{8}} $
4	$\left(\frac{1}{2}\right)^4$	$\frac{1}{16}$

X	$\left(\frac{1}{3}\right)^{x}$	g(x)
-4	$\left(\frac{1}{3}\right)^{-4}$	81
-3	$\left(\frac{1}{3}\right)^{-3}$	27
-2	$\left(\frac{1}{3}\right)^{-2}$	9
-1	$\left(\frac{1}{3}\right)^{-1}$	3
0	$\left(\frac{1}{3}\right)^0$	1
1	$\left(\frac{1}{3}\right)^1$	$\frac{1}{3}$
2	$\left(\frac{1}{3}\right)^{1}$ $\left(\frac{1}{3}\right)^{2}$ $\left(\frac{1}{3}\right)^{3}$	$\frac{1}{9}$
3	$\left(\frac{1}{3}\right)^3$	$ \frac{\frac{1}{3}}{\frac{1}{9}} $ $ \frac{1}{27} $ $ \frac{1}{1} $
4	$\left(\frac{1}{3}\right)^4$	$\frac{1}{81}$

9.10.11 & 12

Groups 3,7,9,4,8 & 10

Questions 4 & 5

Questions 4 & 5

Organisation

- Groups 1, 5, 2 & 6
- Draw either 2^x or 3^x
 Complete Section A
 Activities 3 & 4
 Page 8

Groups 3,7,9,4,8,& 10

• Draw either $\left(\frac{1}{2}\right)^x$ or $\left(\frac{1}{3}\right)^x$

Complete Section B Activities 3 & 4 Pages 13 & 14

Compare 2^x and 3^x

Section A Activity 3 page 8 (Groups 1,2,5,& 6)

- 1. How are they the same and how are they different?
- 2. Are they functions?
- 3. Name this type of function and why?

Understand the characteristics of $f(x) = a^x, a > 1$

Section A

- Domain
- Straight Line
- Is y increasing or decreasing as x increases

• Curvature

page 8

- X-intercept
- Y-intercept

1			

8

None 1

Increasing

Understand the characteristics of

 $f(x) = a^{x}, a > 1$

page 8

Curvature

Range

X-intercept

• Y-intercept

No

Increasing

 Is y increasing or decreasing as x increases

Section A

Domain

• Straight Line

ullet

Maximum/ • Minimum value

- 1. How are they the same and how are they different?
- 2. Are they functions?
- 3. Name this type of function and why?

Understand the characteristics of $f(x) = a^x, 0 < a < 1$ Section B Activity 4 page 13

- Domain
- Straight Line
- Is y increasing or decreasing as x increases

Maximum/
 Minimum value

- Curvature
- Range
- X-intercept
- Y-intercept

Understand the characteristics of $f(x) = a^{x}, 0 < a < 1$ Section B Activity 4 page 13 Domain Curvature $\mathbf{x} \in \mathbf{R}$ Decreasing ullet• Straight Line R⁺ Range No Is y increasing or X-intercept None decreasing as x Decreasing • Y-intercept 1 increases

None

Maximum/
 Minimum value

Organisation

- Groups 1,3,5,7,& 9
- Section C Activity 1
- Page 14

- Groups 2,4,6,8 & 10
- Section C Activity 2
- Page 14

Compare 2^x and $\left(\frac{1}{2}\right)^x$

- 1. Same
- 2. Different
- 3. Write $f(x) = \left(\frac{1}{2}\right)^x$ using a base of 2
- 4. What transformation maps the graph of $f(x) = 2^x$ onto the graph of $f(x) = \left(\frac{1}{2}\right)^x$?

Compare 3^x and $\left(\frac{1}{3}\right)^x$

- 1. Same
- 2. Different
- 3. Write $g(x) = \left(\frac{1}{3}\right)^x$ using a base of 3
- 4. What transformation maps the graph of $g(x) = 3^x$ onto the graph of $g(x) = \left(\frac{1}{3}\right)^x$?

Compare

Section C

1. If $f(x) = a^x$, $a \in \mathbb{R}$, a > 1, then the properties of the exponential function are:

2. If $f(x) = a^x$, $a \in \mathbb{R}$, a > 1, then the features of the exponential graph are:

3. If $f(x) = a^x$, $a \in \mathbb{R}$, 0 < a < 1, then the properties of the exponential function are:

4. If $f(x) = a^x$, $a \in \mathbb{R}$, 0 < a < 1, then the features of the exponential graph are:

All Groups

Section C - Activity 4: Which of the following equations represent exponential functions?

Equation	Is it an exponential Function? Yes/No	Explain why
$f(\mathbf{x}) = \left(\frac{1}{2}\right)^{\mathbf{x}}$		
$f(\mathbf{x}) = \mathbf{x}^2$		
$f(\mathbf{x}) = (-2)^{\mathbf{x}}$		
$f(\mathbf{x}) = 2(3)^{\mathbf{x}}$		
$f(x)=-2^x$		
$f(\mathbf{x}) = 3(\mathbf{x})^{\frac{1}{2}}$		
$f(x)=(0.9)^{\times}$		

Problem Solving Questions on Exponential Functions

Note: Extension Activities are required to strengthen students' abilities in the following areas from the syllabus:

Level	Syllabus	Page
JCHL	$f(x) = a2^x$ and $f(x) = a3^x$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 31
LCFL	$f(x) = a2^x$ and $f(x) = a3^x$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 32
LCOL	$f(x) = ab^{\times}$, where $a \in \mathbb{N}$, $b, x \in \mathbb{R}$.	Page 32
LCHL	$f(x) = ab^x$, where $a, b, x \in \mathbb{R}$.	Page 32

