Exploration of Exponential Functions

Prior Knowledge

If a is any positive number and x is any integer, then $a^{x}>0$

$$
\begin{aligned}
& \text { e.g. } 3^{4}=81>0 \\
& \qquad 4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}>0
\end{aligned}
$$

- Understand and apply the laws of indices
- Functions

Exponents/Indices/Powers (base) exponent

The exponent says how many of the base are being multiplied together.

John has $€ 10$ to buy bars of chocolate which cost $€ 2$ each.

John has $€ 10$ to buy bars of chocolate which cost $€ 2$ each. Let x be the number of chocolate bars we buy and y be the amount of money left. The relationship between x and y is shown below

1. Each value of x corresponds to values of y
\&
2. Each value of x corresponds to only one value of y

y is a function of x if both of these
 2 conditions are true

2.Each value of x corresponds to only one value of y

Basic Technique

Read information from a graph
e.g. the figure shows the graph of $p(x)=x^{2}+1$ and $q(x)=x^{2}-2$ in the domain $-4 \leq x \leq 4, x \in \mathbb{R}$

Discuss what are the similarities and the differences

Basic Technique

Read information from a graph
e.g. the figure shows the graph of $P(x)=x^{2}+1$ in the domain $-4 \leq x \leq 4, x \in \mathbb{R}$

- The graph has no x-intercepts
- Its y intercept is 1
- For $x \geq 0, x^{2}+1$ increases as x increases
- For $x \leq 0, x^{2}+1$ increases as x decreases

Exponential Functions

Learning Outcomes
After completing this session you will be able to:

1. Understand the properties of exponential functions
2. Learn the features of their graphs

Organisation

- Groups 1\& 5 Complete Section A Student Activity 1 page 4-5
- Groups 3, 7 \& 9

Complete Section B Student Activity 1 page 9-10

- Groups 2 \& 6

Complete Section A Student Activity 2 page 6-7

- Groups 4,8 \& 10

Complete Section B
Student Activity 2
page 11-12

Feedback

- Groups 1\& 5 Section A Student Activity 1 page 4-5
- Groups 2 \& 6 Section A
Student Activity 2
page 6-7

Feedback

Q1
(i) Base
(ii) Exponent
(iii) Varying
(iv) Constant

Q2 Domain

$$
f(x)=2^{x}
$$

Varying
Constant

Domain
Base
Exponent
$g(x)=3^{x}$

Feedback

Q1		$f(x)=2^{x}$		$\mathrm{g}(\mathrm{x})=3^{x}$
(i)	Base	2	Base	3
(ii)	Exponent	X	Exponent	X
(iii)	Varying	x \& f(x)	Varying	x \& $\mathrm{g}(\mathrm{x})$
(iv)	Constant	2	Constant	3
Q2	Domain	$\mathrm{x} \in \boldsymbol{R}$	Domain	$\mathrm{x} \in R$

x	$(2)^{X}$	$f(x)$
-4	$(2)^{-4}$	$1 / 16$
-3	$(2)^{-3}$	$1 / 8$
-2	$(2)^{-2}$	$1 / 4$
-1	$(2)^{-1}$	$1 / 2$
0	$(2)^{0}$	1
1	$(2)^{1}$	2
2	$(2)^{2}$	3
3	$(2)^{3}$	8
4	$(2)^{4}$	16

x	$(3)^{X}$	$g(x)$
-4	$(3)^{-4}$	$1 / 81$
-3	$(3)^{-3}$	$1 / 27$
-2	$(3)^{-2}$	$1 / 9$
-1	$(3)^{-1}$	$1 / 3$
0	$(3)^{0}$	1
1	$(3)^{1}$	3
2	$(3)^{2}$	9
3	$(3)^{3}$	27
4	$(3)^{4}$	81

Groups

1\& 5

2 \& 6

Groups

1\& 5

Groups 1, 5, 2 \& 6

Questions 4 \& 5

Q4
(i) Straight Line
(ii) Y increasing or decreasing as x increases
(iii) Rate of change
(iv) Describe how its curvature/rate of change is changing

Q5

Increasing

Not constant Why?
(v) X-intercept
(vi) Y -intercept

Increasing
(iii) Outputs as x decreases
(iv) An output of 0 ?
\square R^{+} No Why?

Decreases

No

None

Questions 4 \& 5

Q4
(i) Straight Line
(ii) Y increasing or decreasing as x increases
(iii) Rate of change

(iv) Describe how its
 curvature/rate of change is changing

Q5
(i) Outputs (Range) \square
(ii) Negative Outputs, \square Why?
(iii) Outputs as x
 decreases
(iv) An output of 0 ? Why?
(v) X-intercept
(vi) Y -intercept
\square
\square

\square

\square

Feedback

- Groups 3, 7 \& 9 Section B Student Activity 1 page 9-10
- Groups 4,8 \& 10 Section B
Student Activity 2 page 11-12

Feedback

Q1
(i) Base
(ii) Exponent
(iii) Varying
(iv) Constant

Q2 Domain

$$
f(x)=\left(\frac{1}{2}\right)^{x}
$$

$$
x \& f(x)
$$

$\mathrm{x} \in \boldsymbol{R}$
Domain
Base
Exponent
Varying
Constant
$g(x)=\left(\frac{1}{3}\right)^{x}$

$\mathrm{x} \in \boldsymbol{R}$

x	$\left(\frac{1}{2}\right)^{x}$	$f(x)$
-4	$\left(\frac{1}{2}\right)^{-4}$	16
-3	$\left(\frac{1}{2}\right)^{-3}$	8
-2	$\left(\frac{1}{2}\right)^{-2}$	4
-1	$\left(\frac{1}{2}\right)^{-1}$	2
0	$\left(\frac{1}{2}\right)^{0}$	1
1	$\left(\frac{1}{2}\right)^{1}$	$\frac{1}{2}$
2	$\left(\frac{1}{2}\right)^{2}$	$\frac{1}{4}$
3	$\left(\frac{1}{2}\right)^{3}$	$\frac{1}{8}$
4	$\left(\frac{1}{2}\right)^{4}$	$\frac{1}{16}$

x	$\left(\frac{1}{3}\right)^{x}$	$\mathrm{~g}(\mathrm{x})$
-4	$\left(\frac{1}{3}\right)^{-4}$	81
-3	$\left(\frac{1}{3}\right)^{-4}$	27
-2	$\left(\frac{1}{3}\right)^{-2}$	9
-1	$\left(\frac{1}{3}\right)^{-1}$	3
0	$\left(\frac{1}{3}\right)^{0}$	1
1	$\left(\frac{1}{3}\right)^{2}$	$\frac{1}{3}$
2	$\left(\frac{1}{3}\right)^{2}$	$\frac{1}{9}$
3	$\left(\frac{1}{3}\right)^{3}$	$\frac{1}{27}$
4	$\left(\frac{1}{3}\right)^{4}$	$\frac{1}{81}$

Groups

3,7 \& 9

4,8 \& 10

Groups

3,7 \& 9

$4,8 \& 10$

Groups 3,7,9,4,8 \& 10

Questions 4 \& 5

Q4
(i) Straight Line
(ii) Y increasing or decreasing as x increases
(iii) Rate of change

(iv) Describe how its
 curvature/rate of change is changing

Q5
(i) Outputs (Range)
(ii) Negative Outputs, Why?
(iii) Outputs as x
 decreases
(iv) An output of 0 ? Why?
(v) X-intercept
(vi) Y -intercept
\square
\square

Questions 4 \& 5

Q4
(i) Straight Line
(ii) Y increasing or decreasing as x increases
(iii) Rate of change
(iv) Describe how its Decreasing curvature/rate of change is changing

Q5
No (i) Outputs (Range)
\square R^{+}
\square Why?
(iii) Outputs as x Increases decreases
 Why?
(v) X-intercept
(vi) Y -intercept \square

Organisation

- Groups $1,5,2$ \& 6
- Draw either 2^{x} or 3^{x} Complete Section A Activities 3 \& 4 Page 8

Groups $3,7,9,4,8, \& 10$

- Draw either $\left(\frac{1}{2}\right)^{x}$ or $\left(\frac{1}{3}\right)^{x}$

Complete Section B
Activities 3 \& 4
Pages 13 \& 14

Compare 2^{x} and 3^{x}

Section A Activity 3 page 8 (Groups 1,2,5,\& 6)

1. How are they the same and how are they different?
2. Are they functions?
3. Name this type of function and why?

Understand the characteristics of

 $f(x)=a^{x}, a>1$Section A

- Domain
- Straight Line
- Is y increasing or decreasing as x increases
- Maximum/ \square
Minimum value

\square
 Activity 4 page 8
- Range
- X-intercept
- Y-intercept
- Curvature

Understand the characteristics of $f(x)=a^{x}, a>1$

Section A

- Domain
- Straight Line
- Is y increasing or decreasing as x increases
- Maximum/

Minimum value
No Increasing Activity 4 page 8

$$
x \in R
$$

No

而

- Curvature
- Range
- X-intercept
- Y-intercept

None
\square

Increasing

1

Compare $\left(\frac{1}{2}\right)^{x}$ and $\left(\frac{1}{3}\right)^{x}$

Section B Activities 3 \& 4 page 13

1. How are they the same and how are they different?
2. Are they functions?
3. Name this type of function and why?

Understand the characteristics of

$$
f(x)=a^{x}, 0<a<1
$$

Section B Activity 4 page 13

- Domain
- Straight Line

- Is y increasing or decreasing as x \square increases

- Curvature
- Range
- X-intercept
- Y-intercept \square
- Maximum/ \square
Minimum value

Understand the characteristics of

$$
f(x)=a^{x}, 0<a<1
$$

Section B Activity 4 page 13

- Domain
- Straight Line
No
-
- Is y increasing or decreasing as x Decreasing increases

$$
\mathrm{x} \in R
$$

而

- Maximum/

Minimum value

Organisation

- Groups $1,3,5,7, \& 9$
- Section C Activity 1
- Page 14
- Groups 2,4,6,8 \& 10
- Section C Activity 2
- Page 14

Compare 2^{x} and $\left(\frac{1}{2}\right)^{x}$

1. Same
2. Different
3. Write $f(x)=\left(\frac{1}{2}\right)^{x} \quad$ using a base of 2
4. What transformation maps the graph of $f(x)=2^{x}$ onto the graph of $f(x)=\left(\frac{1}{2}\right)^{x}$?

Compare 3^{x} and $\left(\frac{1}{3}\right)^{x}$

1. Same
2. Different
3. Write $\mathrm{g}(x)=\left(\frac{1}{3}\right)^{x} \quad$ using a base of 3
4. What transformation maps the graph of $g(x)=3^{x}$ onto the graph of $g(x)=\left(\frac{1}{3}\right)^{x}$?

Compare

All Groups

Complete Section C

Activity 3
page 15

Section C

1. If $f(x)=a^{x}, a \in \mathbb{R}, a>1$, then the properties of the exponential function are:
2. If $f(x)=a^{x}, a \in \mathbb{R}, a>1$, then the features of the exponential graph are:
3. If $f(x)=a^{x}, a \in \mathbb{R}, 0<a<1$, then the properties of the exponential function are:
4. If $f(x)=a^{x}, a \in \mathbb{R}, 0<a<1$, then the features of the exponential graph are:

All Groups

Section C - Activity 4: Which of the following equations represent exponential functions?

Equation	Is it an exponential Function? Yes/No	Explain why
$f(x)=\left(\frac{1}{2}\right)^{x}$		
$f(x)=x^{2}$		
$f(x)=(-2)^{x}$		
$f(x)=2(3)^{x}$		
$f(x)=-2^{x}$		
$f(x)=3(x)^{\frac{1}{2}}$		
$f(x)=(0.9)^{x}$		

Problem Solving Questions on Exponential Functions

Note: Extension Activities are required to strengthen students' abilities in the following areas from the syllabus:

Level	Syllabus	Page
JCHL	$f(x)=a 2^{x}$ and $f(x)=a 3^{x}$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 31
LCFL	$f(x)=a 2^{x}$ and $f(x)=a 3^{x}$, where $a \in \mathbb{N}, x \in \mathbb{R}$.	Page 32
LCOL	$f(x)=a b^{x}$, where $a \in \mathbb{N}, b, x \in \mathbb{R}$.	Page 32
LCHL	$f(x)=a b^{x}$, where $a, b, x \in \mathbb{R}$.	Page 32

Exponential Functions
(properties)
$\underbrace{f(x)=a^{x}, 0<a<1}_{\text {Exponential Graphs }} f(x)=$
(features)

2^{x} and 3^{x}

Prior Knowledge

Connections

Effective questioning

Underlying Principles

What if questions

Misconceptions

Methods rather than answers

