

Money matters

"How long will it take for a sum of money to double, if invested at 20% compound interest rate, compounded annually?"

We know the output (effect).
We want to find the input(cause).
The unknown is in the exponent/power/index.

Historical Context ($16^{\text {th }}$ and early $17^{\text {th }}$ centuries)

- Enormous expansion in scientific knowledge, geography, Physics and Astronomy
- Scientists spending too much time doing tedious numerical calculations.
- An invention to free scientists from this burden was required
- John Napier (1550-1617) Scottish mathematician took up the challenge.

Prior knowledge

$$
a^{p} \times a^{q}=a^{p+q}
$$

Indices, powers, exponents

$$
\begin{aligned}
& a^{p} \div a^{q}=a^{p-q} \\
& \left(a^{p}\right)^{q}=a^{p q} \\
& a^{-p}=\frac{1}{a^{p}} \\
& a^{\frac{p}{q}}=\sqrt[q]{a^{p}}
\end{aligned}
$$

x	$2 x$
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096

What types of sequences are shown here?

A simple relation exists between the terms of the G.P. and the corresponding indices or exponents of the common ratio of the G.P.

This relation is the key idea behind Napier's invention.

x	22^{x}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
G.P.	
G.P.	

Calculate:
 (i) 32×128

Multiplication reduced to addition!

Check out other examples.

Calculate:

(ii) $4096 \div 512$

Division reduced to subtraction!

Check out other examples.
Exponentiation reduced to multiplication!
Check out other examples.
Gaps in the table

(fixed number) $)^{\text {power }}=$ positive number

"If we could write any positive number as a power of some given fixed number, (later called the base), then multiplication and division of numbers would be reduced to addition and subtraction of their exponents."

He spent 20 years of his life making up tables of powers of a base for any positive number!

- What power do I put on 2 to give me 256 ?
- What power do I put on 2 to give me 1024?

x	2^{x}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096

$2^{x}=\boldsymbol{y} \Leftrightarrow \log _{2}(\boldsymbol{y})=\boldsymbol{x}$	x	2^{x}	$\begin{aligned} & \hline \text { The inputs for } \mathrm{y}=2^{\mathrm{x}} \\ & \text { are " } \log _{2} \text { ". } \\ & \hline \end{aligned}$
Exercise in booklet:		1	
switching between	1	2	
exponential and log forms	2	4	
(Power	3	8	Logs reduce a big range of numbers to a more manageable range.
(of 2)	4	16	
	5	32	
\log	6	64	
	7	128	Increase of 1 in the $\log _{2}$ scale means a
$\log _{2}(256)=8$	8	256	
$\log _{2}(1024)=10$	9	512	
(1)	10	10 in the
	11	204	original scale.
$\log _{2} 2=1$	12	4096	

x	$2 x$
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096

For what values of x is $\log _{2}(x)<0$?

$\log _{2}($ numbers between 0 and 1)

x	2^{x}
0	1
-1	$1 / 2$
-2	$1 / 4$
-3	$1 / 8$
-4	$1 / 16$
-5	$1 / 32$
-6	$1 / 64$
-7	$1 / 128$
-8	$1 / 256$
-9	$1 / 512$
10	$1 / 2$
$1 / 16$	
$1 / 32$	
$1 / 64$	
$1 / 128$	
$1 / 256$	
$1 / 512$	
$1 / 1024$	

| X | 2^{x} |
| ---: | ---: | ---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1,024 |

X	3^{X}
0	1
1	3
2	9
3	27
4	81
5	243
6	729
7	2,187
8	6,561
9	19,683
10	59,049

X	
5^{x}	
0	1
1	5
2	25
3	125
4	625
5	3,125
6	15,625
7	78,125
8	390,625
9	$1,953,125$
10	$9,765,625$

X	
6^{x}	
0	1
1	6
2	36
3	216
4	1,296
5	7,776
6	46,656
7	279,936
8	$1,679,616$
9	$10,077,696$
10	$60,466,176$

X	10^{X}
0	1
1	10
2	100
3	1,000
4	10,000
5	100,000
6	$1,000,000$
7	$10,000,000$
8	$100,000,000$
9	$1,000,000,000$
10	$10,000,000,000$

Common logs (Log)

2^{x}	\log
$2\left(2^{x}\right)$	
1	0
2	1
4	2
8	3
16	4
32	5
64	6
128	7
256	8
512	9
1,024	10

3^{x}	\log	$3\left(3^{x}\right)$
1	0	
3	1	
9	2	
27	3	
81	4	
243	5	
729	6	
2,187	7	
6,561	8	
19,683	9	
59,049	10	

5^{x}	$\log _{5}\left(5^{x}\right)$
1	0
5	1
25	2
125	3
625	4
3,125	5
15,625	6
78,125	7
390,625	8
$1,953,125$	9
$9,765,625$	10

6^{x}	$\log _{6}\left(6^{x}\right)$
1	0
6	1
36	
216	2
1,296	3
7,776	4
46,656	5
279,936	6
$1,679,616$	7
$10,077,696$	8
$60,466,176$	9

10^{x}	$\log 10\left(10^{x}\right)$
1	$0 \mid$
10	1
100	2
1,000	3
10,000	4
100,000	5
$1,000,000$	6
$10,000,000$	7
$100,000,000$	8
$1,000,000,000$	9
$10,000,000,000$	10

Logs put numbers on a human friendly scale. Millions, billions and trillions are really big but written as powers of 10 they become tame! Just plain old 6 and 9 and 12!
The bigger the base the smaller the log of the number to that base.

Base e and natural logs (In)

-		
e^{x}	e^{x}	$\log _{e}(x)=\ln (x)$
$0 \quad 1$	1	0
$1{ }^{1} \mathrm{e}^{1}$	e^{1}	1
$2 e^{2}$	e^{2}	2
$3 \mathrm{e}^{3}$	e^{3}	3
$4 e^{4}$	e^{4}	4
$5 \mathrm{e}^{5}$	e^{5}	5
$6 e^{6}$	e^{6}	6
$7 \mathrm{e}^{7}$	e^{7}	7
$8 \mathrm{e}^{8}$	e^{8}	
$9 \mathrm{e}^{9}$	e^{9}	9
10 e ${ }^{10}$	e^{10}	10

Natural logs are powers of base e

Formulator Tarsia

8．Tarsia－［Indices puzzle］

 e file View Window Help——园目｜呂｜

Number

AlgebraGeometry
()) Statistics

File Converter

1) Click the download button 2) This will take you to our website 3) Download the product

Advertisement

Switching between Exponential and logarithmic forms of Equations
4.

Evaluat the expression below forming an equation	Write the equivalent exxonential form of the equation formed from the first column
$\log _{2} 16=4$	$2^{4}=16$
$\log _{2}\left(\frac{1}{64}\right)$	$2^{-4}=\frac{1}{64}$
$\log _{2}(1)$	$2^{0}=1$
$\log _{2}\left(\frac{1}{8}\right)$	$2^{-3}=\frac{1}{8}$
$\log _{e} e$	$e^{1}=e$
$\log _{2}(-4)$	Not possible

Exponential form of an equation	Write the equivalent log form of the equation in the previous column
$5^{2}=25$	$\log _{5} 25=2$
$5^{-2}=\frac{1}{25}$	$\log _{5}\left(\frac{1}{25}\right)=-2$
$10^{1}=10$	$\log _{10} 10=1$
$\log _{9} 3=\left(\frac{1}{2}\right)$	
$27^{\frac{1}{3}}=3$	$\log _{27} 3=\left(\frac{1}{3}\right)$
$b^{0}=1$	$\log _{b} 1=0$

7A. Evaluate each of the following:

$\log _{2}(32 \times 2)=\log _{2}(64)=\underline{6}$	$\log _{2}(32)+\log _{2}(2)=\underline{5}+\underline{1}+=\underline{6}$
$\log _{2}(27 \times 9)=\log _{2}(243)=\underline{5}$	$\log _{2}(27)+\log _{2}(9)=\underline{3}+\underline{2}+=\underline{5}$
$\log _{2}(25 \times 5)=\log _{2}(64)=\underline{3}$	$\log _{2}(25)+\log _{2}(5)=\underline{2}+\underline{1}+=\underline{-3}$
$\log _{2}\left(16 \times \frac{1}{16}\right)=\log _{2}(64)=\underline{0}$	$\log _{2}(16)+\log _{2}\left(\frac{1}{16}\right)=\underline{4}+\underline{-4}+=\underline{0}$

What pattern seems to hold?
Can you write a rule for $\log _{b}(x y)$ in terms of $\log _{b}(x)$ and $\log _{b}(y)$?

7B. Evaluate each of the following:

$$
\log _{2}(64 \div 4)=\log _{2}(16)=\underline{4}
$$

$$
\log _{6}(216 \div 6)=\log _{6}(36)=\underline{2}
$$

$$
\log _{10}(100 \div 1000)=\log _{10}\left(\frac{1}{10}\right)=-1
$$

$\log _{5}(25 \div 25)=\log _{5}(1)=\underline{0}$

What pattern seems to hold?
Can you write a rule for $\log _{b}\left(\frac{x}{y}\right)$ in terms of $\log _{b}(x)$ and $\log _{b}(y)$?

7C. Evaluate each of the following:

$$
\begin{array}{l|l}
\log _{2}(8)^{3}=\log _{2}(512)=\underline{9} & 3 \log _{2}(8)=3(3)=\underline{9} \\
\log _{2}(256)^{\frac{1}{2}}=\log _{2}(16)=\underline{4} & \frac{1}{2} \log _{2}(256)=\frac{1}{2}(8)=\underline{4} \\
\log _{10}(10)^{4}=\log _{10}(10,000)=\underline{4} & 4 \log _{10}(10)=4(1)=\underline{4} \\
\log _{3}(27)^{2}=\log _{3}(729)=\underline{6} & 2 \log _{3}(27)=2(3)=\underline{6}
\end{array}
$$

What pattern seems to hold?
Can you write a rule for $\log _{b}(x)^{y}$ in terms of lo:

Use the graph of $\mathrm{y}=2^{\mathrm{x}}$ to estimate (i) $\log _{2} 26$ (ii) $\log _{2} 39.4$?

$$
\begin{array}{ll}
2^{4.7} \approx 26 & \Rightarrow \log _{2}(26) \approx 4.7 \\
2^{5.3} \approx 39.4 & \Rightarrow \log _{2}(39.4)=5.3
\end{array}
$$

Logs give the input for some output; the cause for some effect

$$
\begin{aligned}
1.2^{t} & =2 \\
t & =\log _{1.2} 2
\end{aligned}
$$

ПATURAL-U.P.A.II.

What power do I put on 1.2 , to get 2 ?

Logs

Answer: 4 years

$t=\log _{1.2} 2$

CASIO

AATURAL-U.P.A.I.

What power do I put on 1.2, to get 2?

Logs

Answer: 4 years

Fill in the table and hence draw the graph of $g(x)=f^{-1}(x)$

(b) What is the relationship between $f(x)=2^{x}$ and $g(x)=\log _{2}(x)$
(c) Explain why the relation $g(x)=\log _{2}(x), x \in \mathbb{R}^{+}$ is a function

x	$f(x)=2^{x}$	(x, y)
-2	$\frac{1}{4}$	$\left(-2, \frac{1}{4}\right)$
-1	$\frac{1}{2}$	$\left(-1, \frac{1}{2}\right)$
0	1	$(0,1)$
1	2	$(1,2)$
2	4	$(2,4)$
3	8	$(3,8)$

x	$g(x)=\log _{2}(x)$	(x, y)
$\frac{1}{4}$	-2	$\left(\frac{1}{4},-2\right)$
$\frac{1}{2}$	-1	$\left(\frac{1}{2},-1\right)$
1	0	$(1,0)$
2	1	$(1,2)$
4	2	$(4,2)$
8	3	$(8,3)$

(d) $\operatorname{For} g(x)=\log _{2}(x)$
(i) Identify the base of $g(x)=\log _{2}(x)$
(ii) What is varying for the function $g(x)=\log _{2}(x)$
(iii) What is constant for the function $g(x)=\log _{2}(x)$
(iv) What is constant in the function $f(x)=2^{x}$
(e) For $g(x)=\log _{2}(x)$
(i) What is the domain?
(ii) What is the range?
(f) Describe the graph of $\boldsymbol{g}(\boldsymbol{x})=\log _{2}(x)$
(i) Is it a straight line?
(ii) Is y increasing or decreasing as x increases?

(iii) Describe how the rate of chanoe varies as x increases.
(g) For $g(x)=\log _{2}(x)$
(i) Where does the graph cross the x-axis?
(ii) What happens to the output as x decreases between 0 and 1?
(iii) What is the y-intercept of the graph of $g(x)=\log _{2}(x)$
(iv) What is the relationship between the y-axis and the graph of $g(x)=\log _{2}(x)$

Sketching............

Graphs of $f(x)=2^{x}$ and $f^{-1}(x)=\log _{2}(x)$

$$
f^{-1}(\boldsymbol{x})=\log _{\boldsymbol{b}}(\boldsymbol{x}), \boldsymbol{x} \in \boldsymbol{R}^{+}
$$

$\log _{b} \boldsymbol{b}^{x} ?$
$b^{\log _{b} x} ?$

Concept of logarithms is everywhere

in Defense of order of magnitude

Saturn is two orders of magnitude more massive than the earth.

Biologists refer to the growth period of bacteria as their "log phase" because of the connection between their repeated doublings and binary logs.

Minor earthquake felt in north Donegal

Updated: 19:18, Thursday, 26 January 2012
http://www.rte.ie/news/2012/0126/donegal.html


```
An Interview with Charles F. Richter
by
Henry Spall
U.S. Geological Survey, Reston, Va.
```

I found a paper by Professor K. Wadati of Japan in which he compared large earthquakes by plotting the maximum ground motion against distance to the epicenter. I tried a similar procedure for our stations, but the range between the largest and smallest
magnitudes seemed unmanageably large.

Dr. Beno Gutenberg then made the natural suggestion to plot the amplitudes logarithmically. I was lucky because logarithmic plots are a device of the devil".

Richter Magnitude Scale (1934)

Seismograph - An instrument that detects and measures vibrations of Earth's surface.
Seismogram - The record made by a seismograph.

An earthquake rated 6.3 Richter magnitude in Iran on 26 Dec 2003 killed 40,000 people.

The earthquake in Aceh in 2004 was rated 9.2 Richter magnitude.

How much greater in amplitude of ground motion was the earthquake in Aceh compared to the one in Iran?

Solution:
$9.2-6.3=2.9$
$2.9=\log _{10} \frac{\boldsymbol{A}_{2}}{\boldsymbol{A}_{1}}$
$10^{2.9}=\frac{\boldsymbol{A}_{2}}{\boldsymbol{A}_{1}}=794$
Hence the Aceh earthquake was 794 times greater in amplitude.

The earthquake in Yunnan, China, on 26 Nov 2003 was 10000 times weaker than the 9.0 magnitude earthquake in Aceh. What was the magnitude of this earthquake on the Richter scale?

Solution:

$$
\begin{aligned}
& 9.0-\boldsymbol{M}_{2}=\log _{10} \frac{\boldsymbol{A}_{1}}{\boldsymbol{A}_{2}}=\log _{10} \frac{10000}{1} \\
& 9.0-\boldsymbol{M}_{2}=4 \\
& \boldsymbol{M}_{2}=5
\end{aligned}
$$

LOGARITHM (BASE 10) OF MAXIMUM AMPLITUDE MEASURED JN MICRONS **

*** ecuivient to a moment magertuje of 9.5

Richter Magnitude Scale (1934)

Richter's definition of earthquake magnitude
The magnitude \boldsymbol{M} of an earthquake of amplitude \boldsymbol{A} is
$\boldsymbol{M}=\log _{10} \frac{\boldsymbol{A}}{\boldsymbol{A}_{\mathbf{0}}}$
where $\boldsymbol{A}_{\mathbf{0}}$ is the magnitude of the "standard earthquake" measured at the same distance.

Magnitude Comparison Formula

f $\boldsymbol{M}_{\boldsymbol{1}}$ and \boldsymbol{M}_{2} are the magnitudes of two earthquakes, and if A_{1} and A_{2}
re their amplitudes,
neasured at equal distances, then

$$
M_{1}-M_{2}=\log _{10}\left(\frac{A_{1}}{A_{0}}\right)-\log _{10}\left(\frac{A_{2}}{A_{0}}\right)=\log _{10} \frac{\frac{A_{1}}{A_{0}}}{\frac{A_{2}}{A}}=\log _{10}\left(\frac{A_{1}}{A_{2}}\right) \Rightarrow \frac{A_{1}}{A_{2}}=10^{M_{1}-M_{2}}
$$

- Logarithms are particularly useful when the data extends from the very small to the very large.
- The most important feature of the log which makes it so useful is that it moves big values closer together and small values farther apart.

Hence logs increase the range over which numbers can be seen in a meaningful way.

- Logs "tame" big numbers. They reduce a wide range to a more manageable size.
- Logs make very big numbers and very small numbers more human-friendly.
- $\log _{2}:$ A one unit increase in the \log scale is equivalent to multiplying by 2 in the original scale
- $\log _{10}$: A one unit increase in the log scale is equivalent to multiplying by 10 in the original scale
- There is a constant ratio (the base) between consecutive numbers on a log scale.
- There is a constant difference between consecutive numbers on a linear scale.

Continuous versus discrete growth

$€ 140,000$ was deposited at the beginning of January 2005 into an account earning 7% compound interest annually.
When will the investment be worth $€ 200,000$?
Verify and justify that the following two formulae give the same answer.

$$
\begin{aligned}
& \boldsymbol{F}=140,000(1.07)^{t} \\
& \boldsymbol{F}=140,000 \boldsymbol{e}^{0.0675586885 t}
\end{aligned}
$$

Comment on that answer in each case.

Solution

(i) $200,000=140,000(1.07)^{t}$

$$
\frac{200,000}{140,000}=\frac{20}{14}=(1.07)^{t}
$$

$$
\log \left(\frac{20}{14}\right)=\log (1.07)^{t}=t \log (1.07)
$$

$\frac{\log \left(\frac{20}{14}\right)}{\log (1.07)}=5.27168 \ldots$ years

Justifying

$\boldsymbol{F}=140,000(1+\boldsymbol{i})^{t}$
We know that $\ln \left(\mathrm{e}^{\boldsymbol{x}}\right)=\boldsymbol{x}=\boldsymbol{e}^{\ln (x)}$
$\Rightarrow(1+\boldsymbol{i})^{t}=\boldsymbol{e}^{\ln \left((1+i)^{t}\right)}=\boldsymbol{e}^{\boldsymbol{t \operatorname { l n } (1 + i)}}$
$\boldsymbol{F}=140,000(1+\boldsymbol{i})^{t}=140,000 e^{\boldsymbol{t n}(1.07)}=140,000 e^{t(0.0676586485)}$
Note: $\ln (1.07)=0.0676586485 \approx 0.07$

Using base e

$$
\begin{aligned}
& 200000=140,000 e^{0.066888+85 t} \\
& \ln \frac{20}{14}=t(0.0676586485) \\
& t=\frac{\ln \frac{20}{14}}{0.0676586485}=5.27168 \text { years }
\end{aligned}
$$

Measuring acidity

In an aqueous solution, at $25^{\circ} \mathrm{C}$, no matter what it contains,

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

There are 3 possible situations:

1. A neutral solution where $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}$
2. An acidic solution where $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
3. A basic/alkaline solution where $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Increasing hydrogen ion concentration

pH 6 is 10 times more acidic than pH 7 and 100 times more acidic than pH 8

pH scale

Acidic

Neutral Alkaline

$\mathrm{pH}=-\log [\mathrm{H}]^{+}$

A substance has a hydrogen ion concentration of
$\left[\mathrm{H}^{+}\right]=2.7 \times 10^{-5}$ moles per litre.
Determine the pH and classify the substance as an acid or a base.

Solution:

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(2.7 \times 10^{-5}\right) \\
& =4.6
\end{aligned}
$$

Hence the substance is an acid.

DECIBEL LEVEL AT KATIE’S MATCH HIT 113.7

The decibel level at Katie's
Olympic semi final was 113.7 dB

A jackhammer operates at sound level of 92 dB

Difference in $\mathrm{dB}=113.7-92$
Difference in B = 21.7
Difference in B=

$$
\text { Solution } \quad \beta_{2}-\beta_{1}=120-92=28 \mathrm{~dB}=2.8 \mathrm{~B}
$$

d for the loudest concert. $\quad \mathbf{1 0}^{2.8} \approx \mathbf{6 3 0}$
nt of the speakers was The Who are (were) loud!!

The decibel scale for sound intensity level

- Your ears can hear everything from your fingertip brushing lightly over your skin to a loud jet engine.
- In terms of power, the sound of the jet engine is about 1,000,000,000,000 times more powerful than the smallest audible sound. That's a big range!
- We need a log scale.
- The ear responds to the ratio of the intensities of sounds (measured in watts/m²) and not to their differences.

Decibel Scale

If an intensity changes from I_{1} to I_{2} we define the change in the number of decibels as follows:

Number of decibels((dB) change $=$

$$
10 \log _{10} \frac{I_{2}}{I_{1}}
$$

Intensity levels in decibels for some common sounds:

Near total silence	0 dB
A whisper	15 dB
Normal conversation	60 dB
A lawnmower	90 dB
A car horn	110 dB
A rock concert or a jet engine	120 dB

Show that an increase of 3 dB represents a doubling of sound intensity.

The loudest concert

In 1976 the Who set a record for the loudest concert.
The sound level 46 m in front of the speakers was
$\beta_{2}=120 \mathrm{~dB}$.
What is the ratio of the intensity I_{2} of the band sound at that spot compared to the intensity I_{1} of the sound from a jackhammer operating at sound level of $\beta_{1}=92 \mathrm{~dB}$?

$$
\begin{aligned}
\text { Solution } \quad \beta_{2}-\beta_{1} & =\mathbf{1 2 0}-\mathbf{9 2}=\mathbf{2 8} \mathrm{dB}=\mathbf{2 . 8 B} \\
\mathbf{1 0}^{2.8} & \approx \mathbf{6 3 0} \\
& \text { The Who are (were) loud!! }
\end{aligned}
$$

$\ln (1+\boldsymbol{x}) \cong \boldsymbol{x}$, for small \boldsymbol{x}

What is the relationship between x and y ?

X	y
1	1%
2	45
3	135
4	405
5	1215
ϵ	3645
7	10935
8	32805
9	98415
10	295245
11	9857 ${ }^{\circ}$
$a=100^{0.699}$	
$b=10^{0 .}$	$=3$

Transforming exponential graphs into linear graphs using logarithms.

Consider the function $y=5(3)^{x}$.

$$
y=5(3)^{x}
$$

$$
\log y=\log (5)+x \log (3)
$$

This is a line with slope $=\log (3)$ and

$$
y \text { - intercept }=\log (5)
$$

In general for $\mathrm{y}=\mathrm{ab}^{\boldsymbol{x}}$, if we plot $\log (y)$ against x :
y-intercept $=\log (a)$
Slope $=\log (b)$

Have a chat about rules of logs and some activity to reinforce them.

Séana agus logartaim

Indices and logarithms

$$
\begin{array}{lll}
a^{p} a^{q}=a^{p+q} & \log _{a}(x y)=\log _{a} x+\log _{a} y & a^{x}=y \Leftrightarrow \log _{a} y=x \\
\frac{a^{p}}{a^{q}}=a^{p-q} & \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y & \log _{a}\left(a^{x}\right)=x \\
\left(a^{p}\right)^{q}=a^{p q} & \log _{a}\left(x^{q}\right)=q \log _{a} x & a^{\log _{a} x}=x \\
a^{0}=1 & \log _{a} 1=0 & \\
a^{-p}=\frac{1}{a^{p}} & \log _{a}\left(\frac{1}{x}\right)=-\log _{a} x & \log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\
\frac{1}{a^{q}}=\sqrt[q]{a} & \\
a^{p}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p} &
\end{array}
$$

$$
(a b)^{p}=a^{p} b^{p}
$$

$$
\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}
$$

Most commonly used log bases

	Exponential form	Equivalent log form
	$\mathbf{5}^{2}=\mathbf{2 5}$	$\log _{5} 25=2$
A base is always a base	$(\mathbf{5})^{-2}=\frac{\mathbf{1}}{\mathbf{2 5}}$	$\log _{\mathbf{5}}\left(\frac{\mathbf{1}}{\mathbf{2 5}}\right)=-\mathbf{2}$

The input for the log is the output for the exponential.

$$
\log _{2} a=c \Rightarrow 2 \boldsymbol{c}=\boldsymbol{a}
$$

Your turn....

	Evaluate	Equivalent exponential form
	$\log _{2} 16=4$	$2^{4}=16$
A base is always a base	$\log _{2} 8=3$	$2^{3}=8$
	$\log _{2} 1=\mathbf{0}$	$2^{0}=1$
A \log is a power for a base	$\log _{2} 1024=10$	$2^{10}=\mathbf{1 0 2 4}$
	$\log _{2} 2=1$	$2^{1}=2$
	$\log _{2} \boldsymbol{a}=\boldsymbol{c}$	$2^{c}=\mathbf{a}$

The input for log is the output for the exponential.

$$
\log _{2} a=c \Rightarrow 2 c=a
$$

Q7 b 2012 Paper 1 LCFL Phase 3

(b) A scientist is growing bacteria in a dish. The number of bacteria starts at 10000 and doubles every hour.
(i) Complete the table below to show the number of bacteria over the next five hours.

Time in hours	0	1	2	3	4	5
Number of bacteria (in thousands)	10					

(ii) Draw a graph below to show the number of bacteria over the five hours.
(iii) Use your graph to estimate the number of bacteria in the dish after $2 \frac{1}{2}$ hours.

Answer: \qquad
(iv) The scientist is growing the bacteria in order to do an experiment. She needs at least 250000 bacteria in the dish to do the experiment. She started growing the bacteria at 10:00 in the morning. At what time is the dish of bacteria ready for the experiment?

Q7 b 2012 Paper 1 LCFL Phase 3

(b) A scientist is growing bacteria in a dish. The number of bacteria starts at 10000 and doubles every hour.
(i) Complete the table below to show the number of bacteria over the next five hours.

Time in hours	0	1	2	3	4	5
Number of bacteria (in thousands)	10					

(ii) Draw a graph below to show the number of bacteria over the five hours.
(iii) Use your graph to estimate the number of bacteria in the dish after $2 \frac{1}{2}$ hours.

Answer:
(iv) The scientist is growing the bacteria in order to do an experiment. She needs at least 250000 bacteria in the dish to do the experiment. She started growing the bacteria at 10:00 in the morning. At what time is the dish of bacteria ready for the experiment?

We started here.......
A new function is born whose input

$f(x)=2^{x}$

$$
\boldsymbol{g}(\boldsymbol{x})=\log _{2}(\boldsymbol{x})=\boldsymbol{f}^{-1}(\boldsymbol{x})
$$

$$
2^{6}=64
$$

- What type of function is $f(x)=2^{x}$?

$$
\log _{2}(64)=\log _{2}(2)^{6}=6
$$

- What does this mean for the inverse relation of $f(x)=2^{x}$?

Graphs of $f(x)=2^{x}$ and $f^{-1}(x)=\log _{2}(x)$

Sketching............

Graphs of $y=b^{x}$ and $y=\log _{b}(x)$, variable base

$\boldsymbol{y}=\log _{\frac{1}{a}}(\boldsymbol{x})$ is a reflection in the x-axis of the graph of $\boldsymbol{y}=\log _{a}(\boldsymbol{x})$.
Justify.

$$
\begin{aligned}
y & =\log _{a}(x) \\
\Rightarrow a^{y} & =x \\
\Rightarrow\left(\frac{\mathbf{1}}{a}\right)^{-y} & =x \\
\Rightarrow \log _{\frac{1}{a}} x & =-y \\
\Rightarrow y & =-\log _{\frac{1}{a}} x
\end{aligned}
$$

Hence the graph of $y=\log _{\frac{1}{a}} x$ is the image of $y=\log _{a}(x)$ by reflection in the x-axis

This slide is needed for the graph matching
2. Using 2^{x} table to reduce multiplication to addition etc.
3. Comparing two earthquake amplitudes given their Richter magnitude ratings.
4. Familiarity with the notation activity - logs to indices and indices to logs.
5. Finding $\log _{2}$ of a number not in the table from the graph and using the log to any base button on the calculator
6. Completing Mesopotamia and drug absorption using the calculator
7. Adapting LC FL paper
8. Drawing graph of $g(x)=\log _{2}(x)$ and describing it
9. Geogebra file showing log and exponential as inverses
10. Geogebra file showing variable base for log and exponential
11. Sketching graphs of log and exp for base 2,10 and e

Other activities

1. Rules for logs (seeing patterns)
2. True/False discussion
3. Common misconceptions
4. Fill in the blanks
5. Approximating discrete growth using e (not done on Thursday but important given LCHL
2012)

On slides but not done on Thursday

1. Comparing sound level of the Who concert with sound level from a jackhammer
2. Finding pH

Graph matching

Tarsia hexagon - matching expressions
LCFL 2012 Q7(b) - adapt of LCOL and LCHL

Matching Exercise

Student Output

Solution

$p(x)=\log _{2}(x)$	
$r(x)=\log _{\frac{1}{2}}(x)$	
$n(x)=\ln (x)$	
$u(x)=\log _{\frac{1}{e}}(x)$	
$w(x)=\log _{10}(x)$	
$j(x)=\log _{\frac{1}{10}}(x)$	

http://www.mmlsoft.com/index.php?option=com content\&task=view\&id=11\&|temid=12 Link to oodles more Tarsias: http://www.mrbartonmaths.com/jigsaw.htm

True or false discussion

Equation	Equivalent form	True /False	Correct equation (if false)
$\log _{2} 8=4$			
$\log _{3} 81=4$			
$\log _{10} 5+\log _{10} 10=\log _{10} 15$			
$\log _{2} 64-\log _{2} 4=\log _{2} 16$			
$\log _{3}\left(\frac{1}{81}\right)=-4$			
$2 \log _{2} 8=\log _{2} 16$			
$\log _{2} 4+\log _{2} 128=\log _{2} 512$			

Equation	True /False	
$\frac{\log _{2} 64}{\log _{2} 4}=\log _{2} 16$		
$\frac{\log _{2} 64}{\log _{2} 4}=16$		
$\frac{\log _{2} 64}{\log _{2} 16}=\log _{2}(64-16)$		
$\left(\log _{b} a\right)^{c}=c\left(\log _{b} \boldsymbol{a}\right)$		

Equation	True /False	Explanation
$\frac{\log _{2} 64}{\log _{2} 4}=\log _{2} 16$		
$\frac{\log _{2} 64}{\log _{2} 4}=16$		
$\frac{\log _{2} 64}{\log _{2} 16}=\log _{2}(64-16)$		
$\left(\log _{b} \boldsymbol{a}\right)^{c}=\boldsymbol{c}\left(\log _{\boldsymbol{b}} \boldsymbol{a}\right)$		

Give possible numbers or variables for the blanks in the equations below

$$
\begin{aligned}
& 109_{\square} 5=3
\end{aligned}
$$

$$
\begin{aligned}
& \square \log _{\square}=\log _{\square} \square \\
& \log _{\text {ロ }}-\log _{\square}=6
\end{aligned}
$$

Click on the image to link to the powerpoint.

