Project Maths Workshop 9

C
 A suo!łכวuu0ว วn|D^

Name:

School: \qquad

Contents

WS09.01 Nets 2
WS09.02 Integration 5
Activity 1 5
Activity 2 6
Activity 3 7
Activity 4 8
Activity 5 9
Activity 6 18
WS09.03 GeoGebra 19
Activity 1: Introduction to GeoGebra 19
Activity 2: Graphing Multiple Functions 20
Activity 3: To change the appearance of a graph of a function 20
Activity 4: To draw a function with a given domain and use the Intersect Two Objects tool 21
Activity 5: To Transfer a diagram made in GeoGebra to Word or PowerPoint 22
Activity 6: An Alternative to using the Snipping Tool in GeoGebra (Gives better picture quality.) 23
Activity 7: Function Inspector Tool 24
Activity 8: To draw graph of the Integral of a function 26
Activity 9: Using the Input Bar to find the Integral of a function in an interval 27
Activity 10: To find the area between two curves 27
Activity 11: Using the two Graphics Views 28
Activity 12: To fit a graph to a list of points that are shown on the Spreadsheet view 29

Q1. Match the net of the prism or pyramid with its 3D shape

3D Shape	A	B	C	D	E	F	G	H
Net								

Q2. Which of the following are nets of a cube?

Q3. List the nets that are the same:

Q4. Find the mapping which can be folded to make the cube:

Activity 1

For each function, write in its correct derivative.

$5 x$	
$5 x+2$	
$5 x-10$	
$x^{2}+\pi$	
x^{2}	
$\sin (x)$	
$\sin (x)-1.3$	
$\sin (x)+9$	
$\frac{1}{2} x^{2}$	
$\frac{1}{2} x^{2}-0.358$	

Find the anti-derivative of the function $f(x)=3$ which passes through the point $(1,5)$.
Q1. How is this question different to all the previous anti-derivative questions you have encountered?
\qquad
Q2. Find the indefinite form of the anti-derivative of $f(x)=3$.
\square
Q3. Represent the indefinite form of the anti-derivative graphically below by sketching the antiderivatives for each of the following values of $C=\{-3,-2,-1,0,1,2,3\}$.

Q4. Identify the distinct anti-derivative you were asked to find.

		Area Calculation
(i)		
(ii)		
(iii)		
(iv)		
(v)		

Explain what happens to the width of the rectangles (Δx) as the number of rectangles (n) increases. Express this relationship using mathematical notation.

Description in words: As the number of rectangles increases, the width of the rectangles \square As $n \rightarrow \square, \Delta x \rightarrow \square$

Activity 4

Calculate $\int_{2}^{5}(2 x+1) d x$.
Q1. In words describe what you are being asked to do.

Q2. Using a suitable approach, complete the task.

Group A

Figure 1 shows the UCD Student Computer Centre.

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

\boldsymbol{x}	Width	Height	Area	Pattern
0	0	5	0	$A=5(0)$
1	1	5	5	$A=5(1)$
2				$A=$
3				$A=$
4				$A=$
5				$A=$
6				
\vdots			$A(x)=$	
x				

Q5. Sketch the graph of the area function on the empty axes.

Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x=0$ up to $x=2$.		
Explanation:		
From $x=0$ up to $x=5$.		
Explanation:		
From $x=2$ up to $x=5$.		
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
$h(x)=$	$A(x)=$

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Group B

Figure 2 shows The Vu Bar in Dubai.

Figure 2 - The Vu Bar, Dubai.

Q1. The height of the building changes as we move from from left ($x=0$) to right ($x=8$). Write down the function which describes the changing height of the building.
$h(x)=$

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

\boldsymbol{x}	Width	Height	Area	Pattern
0	0	0	0	$A=\frac{1}{2}(0)(0)$
1	1	1	0.5	$A=\frac{1}{2}(1)(1)$
2				$A=$
3				$A=$
4				$A=$
5				$A=$
6				
7				
8				
\vdots				
x				

Q5. Sketch the graph of the area function on the empty axes.

Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x=0$ up to $x=3$.		
Explanation:		
From $x=0$ up to $x=5.5$.		
Explanation:		
From $x=3$ up to $x=5.5$.		
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
$h(x)=$	$A(x)=$

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Group C

Figure 3 shows a modern timber dwelling.

Figure 3 - Timber Dwelling.

The area under the bounding function changes as we move from left to right. We will now investigate the relationship between the area of the building and its width.

Q2. By calculating the area of the rectangular piece of building shown, complete the statement:

When the width of the rectangular piece is 1 unit, the area of the rectangle is:
$A=$

Q3. By calculating the area of the rectangular piece of building shown, complete the statement:

When the width of the rectangular piece is 2 units, the area of the rectangle is:
$A=$

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

\boldsymbol{x}	Width	Height	Area	Pattern
3	0	9	0	$A=(9)(0)$
4	1	9	9	$A=(9)(1)$
5				$A=$
6				$A=$
7				$A=$
8				$A=$
9				
10				
11				
12				
\vdots				
x				

Q5. Sketch the graph of the area function on the empty axes.

Q6. For each of the areas in the table below:
(a) Shade in the given area on the diagram.
(b) Use the area function to calculate the given area.
(c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x=3$ up to $x=11$.		
Explanation:		
From $x=3$ up to $x=6$.	\qquad	
Explanation:		
From $x=6$ up to $x=11$.		
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
$h(x)=$	$A(x)=$

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Activity 1: Introduction to GeoGebra

To download GeoGebra go to www.geogebra.org .
On opening GeoGebra the following window will appear.

Note: If the Spreadsheet is not visible go to View and choose Spreadsheet and if the Graphics is not visible go to View and choose Graphics.

Note: When you click on Graphics in the View Menu the following toolbar appears:

and when you click on Spreadsheet in the View Menu the following toolbar appears:
䀘 \{1,2\} Σ
Move
Drag or select objects (Esc)

In addition, when in the Spreadsheet view, if one clicks on the right arrow
 you get the Toggle Style Bar. This enables you to change the layout of the Spreadsheet.

Note: When drawing a function use $f(x)=$ rather than $y=$, because when $y=$ is used some of the commands from the Input Bar do not work.

Input the following Input Bar Commands in the Input Bar and press Return on the keyboard.

Function	Example	GeoGebra Input Bar Command
Linear	$f(x)=4 x-3$	$f(x)=4 x-3$
Quadratic	$g(x)=x^{2}-x-6$	$g(x)=x^{\wedge} 2-x-6$
Cubic	$h(x)=x^{3}-4 x^{2}+8 x-12$	$h(x)=x^{\wedge} 3-4 x^{\wedge} 2+8 x-12$
Exponential	$p(x)=3^{x}$	$p(x)=3^{\wedge} x$

Activity 3: To change the appearance of a graph of a function

1. Click on the graph of the function, right click and choose Object Properties. A new Dialogue Box appears.

2. With the Colour tab open change the colour.

3. With the Style tab open use the drop down menu to change the style. and adjust the Line Thickness to the required width.

4. With the Basic tab open, click the Show Label button and choose Name and Value from the drop down menu to enable both the name of the graph of the function and its equation to be shown.

5. Click \qquad at the top of the Dialogue Box.

Activity 4: To draw a function with a given domain and use the Intersect Two Objects tool

For Example Question 6 (b) Junior Certificate Ordinary Level Paper 12013

Draw the graph of the function $f: x \rightarrow 2 x^{2}-2 x-5$ in the domain $-2 \leq \mathrm{x} \leq 3$, where $\mathrm{x} \in \mathbb{R}$.

1. Go to File and choose New Window.
2. In the Input Bar type Function[2x^2-2x-5,-2,3].

Note: If you are using the automatic Function command as in the diagram below, press the Tab button on your keyboard to move from Function to Start x-Value etc.

```
Input: Function[<Function>, <Start x-Value>, <End x-Value>]
```

3. Press Enter on the keyboard.
4. As your function will be automatically called $\boldsymbol{f}(\boldsymbol{x})$, to rename it, right click on the graph of the function and choose Rename.

5. Replace \boldsymbol{f} with \boldsymbol{g} in the Dialogue Box that appears and press $\mathbf{O K}$.

Note: To see the relevant area of this graph, select the Move Graphics tool $\xrightarrow{\leftrightarrows}$, click the y axis and drag towards the origin.

Question 6 (c) (i) Junior Certificate Ordinary Level Paper 12013

Use the graph drawn in $6(\mathrm{~b})$ to estimate: The values of $2 x^{2}-2 x-5$ when $x=0.5$.

1. In the Input Bar type $\boldsymbol{x}=\mathbf{0 . 5}$ and press Enter.
2. Select the Intersect Two Objects tool
 (in the second drop-down menu from the left on the Graphics toolbar) and click on the graph of the function g and the line $\boldsymbol{x}=\mathbf{0 . 5}$.
3. The co-ordinates of the point of intersection appear in the Algebra View.

Question 6 (c) (ii) Junior Certificate Ordinary Level Paper 12013

Use the graph drawn in 6(b) to estimate: The values of x for which $g(x)=0$.

1. Select the Intersect Two Objects tool
 and click on the graph of the function g and the x axis.
2. The co-ordinates of the points of intersection appear in the Algebra View.

Alternatively: Type $\operatorname{Root}[\mathbf{g}]$ in the Input Bar and press return

Activity 5: To Transfer a diagram made in GeoGebra to Word or PowerPoint

1. Draw a function (or whatever diagram is required) in GeoGebra.
2. Click on the Start button
 at the bottom left hand side of your computer's screen.

3. Go to All Programs, Accessories and Snipping Tool.
4. A new Dialogue Box appears.

\& Snipping Tool \square	- \square x
Q New - x cancel 0	
Select a snip type from the menu or click the New button.	(2)

5. Click New and outline the area you want in your picture.
6. Open Word or PowerPoint and click Paste Clipboard or click Control and \mathbf{v} simultaneously on your keyboard.
7. To resize this picture, click on the picture and drag the dots on the corners of the pictures in or out as required.
8. This picture can be centred by clicking
 or press Control and e simultaneously on your keyboard.
9. To wrap the picture in text, right click the picture, choose Wrap Text and follow the arrow to the right to choose the different layouts.

10. Other changes can be made to this picture by right clicking the picture and choosing Object Properties.

Note: To pin the Snipping Tool to the Task Bar, go to All Programs, Accessories and Snipping Tool, right click on Snipping Tool and choose Pin to Taskbar.

Activity 6: An Alternative to using the Snipping Tool in GeoGebra (Gives better picture quality.)

1. Go to File, Export and choose Graphics View as Picture.

2. Complete the new Dialogue Box and click Clipboard.

3. Open Word or PowerPoint, paste and adjust like any other picture.
4. Draw your function in the usual way. For example in the Input Bar type $f(x)=x^{\wedge} \mathbf{2 - x}-6$.
5. Click on the Function Inspector Tool in the third Drop-Down Menu from the right on the Graphics Toolbar.

6. Click on the graph of the function to activate Function Inspector and a new dialogue box appears.

7. With the Interval tab open select the interval you want to examine for example, by typing -1 to 2 in the active window at the bottom of the tab. After each change for example you change the ' 1 ' in the right-hand window to 2 you must press the Enter button on your keyboard after each change for it to take effect.

8. Click and drag the red $\operatorname{dot}(\mathrm{s})$ and watch how the area, the integral and the other values in the Interval tab. change.

Note: The Mean is the Average Value of the function.
Note: The Min. and Max. values given are the minimum and maximum values in the range being investigated.

Explorations:

Why does it say this function has no roots?
Set the interval from - 2 to 5 . Why is the area now different from the integral?

Activity 8: To draw graph of the Integral of a function

1. Draw the graph of the function for example $f(x)=x^{\wedge} \mathbf{2}$.
2. In the Input Bar type Integral[f].

Note: This method takes the Constant of Integration to be zero.

1. Draw the graph of the function for example $f(x)=x^{2}-x-6$
2. In the Input Bar type Integral $[\mathbf{f},-2,3]$ and press Enter.
(Notice the negative answer.)
Now in the Input Bar type Integral[f,-2,4], what do you notice about the value of the Integral? Explain why this happened.

LCHL 2011: Q7 (b).
The curve $y=12 x^{3}-48 x^{2}+36 x$ crosses the x-axis at $x=0, x=1$ and $x=3$, as shown.

Calculate the total area of the shaded regions enclosed by the curve and the x-axis.

Activity 10: To find the area between two curves

1. Draw the graph of the function for example $(\boldsymbol{x})=\boldsymbol{x}^{2}$.
2. Draw the graph of the function $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{3}$.
3. Use the Intersect Two Objects tool to find the points of intersection between the two functions. The co-ordinates of points A and B appear in the Algebra view.
4. In the Input Bar type Integral $[f, x(A), x(B)]$. This is represented by the value a in the Algebra View.
5. In the Input bar type Integral $[g, \boldsymbol{x}(\boldsymbol{A}), \boldsymbol{x}(\boldsymbol{B})]$. This is represented by the value b in the Algebra View.
6. In the Input Bar type $\boldsymbol{c}=\boldsymbol{b}-\boldsymbol{a} . \boldsymbol{c}$ is the area between the curves.

Note: Steps 4-6 can be replaced by:
In the Input Bar type IntegralBetween $[g, f, x(A), x(B)]$.
Function
$\mathbf{f (x)}=\mathrm{x}^{2}$
$\mathbf{g}(\mathrm{x})=\mathrm{x}+3$
Number
$\mathrm{a}=-7.81$
Point
$\mathrm{A}=(-1.3,1.7)$
$\mathrm{B}=(2.3,5.3)$

-27-

Use the two Graphics views to find the Area under a curve by (i) the Integral method and (ii) the Trapezoidal Rule.

1. Go to File and choose New Window.
2. Draw the graph of your function in the usual way. For example in the Input Bar type $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\wedge} \mathbf{2}$.
3. Go to View and select Graphics 2. If the two Graphics views are not aligned right click on the Graphics View and choose Standard View.
4. Select the graph of your function, right click and choose Object Properties.
5. With the Advanced tab open, click Graphics 2.

6. Click at the top of the Dialogue box.
7. Click on the Graphics 1 View and find the integral of the function between 0 and 2 as in the Activity 9 above.
8. Click on the Graphics 2 View.
9. Select the Slider tool $\xrightarrow{a=2}$. Click on the Graphics 2 View and create a slider called n with Min: $=1$, Max: =50 and Increment: = 1. Click Apply.

10. In the Input Bar type $\mathbf{b}=$ TrapeziumSum $[\mathbf{f}, \mathbf{0}, \mathbf{2}, \mathbf{n}]$.

TrapezoidalSum[|<Fi
Note: TrapeziumSum is replaced by TrapezoidalSum, if the GeoGebra Language is set to English(US) instead of English(UK). To change the GeoGebra Language go to Options, Language and follow the arrows.
11. Move the slider \mathbf{n} and as \mathbf{n} gets larger check the relationship between the integral and trapezium area.

Note: The value for the Trapezium sum should eventually have the same value as the integral value when n increases.
Note: To get more accurate area values go to Options, Rounding and choose for example 10 Decimal places.

Can you suggest other uses for the two Graphics Views?
Activity 12: To fit a graph to a list of points that are shown on the Spreadsheet view

1. Go to view and choose Spreadsheet.
2. Insert the x co-ordinates of the points in Column \mathbf{A} and the y co-ordinates in the column \mathbf{B}.

- Spreadsheet

	A	B
1	-3	10
2	-2	5
3	-1	2
4	0	1
5	1	2
6	2	5
7	3	10

3. Highlight the two columns of data in the Spreadsheet, right click, choose Create and List of points.
4. In the Input Bar type Fitpoly[list1,2], if the list is list1 and you require a curve of degree 2 for example.

Note: If you require an exponential curve, input the co-ordinates of the points in the Spreadsheet view and create a list as above and then type FitExp[list1] in the Input Bar, if the list is list1.
(b) A sprinter's velocity over the course of a particular 100 metre race is approximated by the following model, where v is the velocity in metres per second, and t is the time in seconds from the starting signal:

$$
v(t)=\left\{\begin{array}{l}
0, \text { for } 0 \leq t<0.2 \\
-0.5 t^{2}+5 t-0.98, \text { for } 0.2 \leq t<5 \\
11 \cdot 52, \text { for } t \geq 5
\end{array}\right.
$$

Note that the function in part (a) is relevant to $v(t)$ above.

Phote: Willawe Werby. Wikimedia Commoers. CC BY 20
(i) Sketch the graph of v as a function of t for the first 7 seconds of the race.

(ii) Find the distance travelled by the sprinter in the first 5 seconds of the race.
(iii) Find the sprinter's finishing time for the race. Give your answer correct to two decimal places.

1. In the Input bar type Function $[0,0,0.2]$.
2. In the Input bar type Function $\left[-0.5 \mathbf{x}^{\wedge} 2+5 \mathbf{x}-\mathbf{0 . 9 8}, 0.2,5\right]$.
3. Create a slider called lastpartofrace with Min: 5, Max: 15 and Increment: 0.01 .
4. Adjust the slider so that it has a value of 15 .
5. In the Input bar type Function[11.52,5,lastpartofrace].
6. In the Input bar type Integral[$\mathbf{f}, \mathbf{0}, \mathbf{0} 2]$.
7. In the Input bar type Integral $[\mathrm{g}, 0.2,5]$.
8. In the Input bar type Integral[h,5,lastpartofrace].
9. In the Input bar type TotalDistance=a+b+c
10. Adjust the slider lastpartofrace until TotalDistance is approximately 100.
Function
$f(x)=0$
$g(x)=-0.5 x^{2}+5 x-0.98$
$h(x)=11.52$
Number
$0 a=0$
$b=36.86$
$0 \quad c=100.22$
0 lastpartofrace $=13.7$
totalDistance $=137.09$

					-					-													
																				-			
																							-

