

Contents

WS09.01	Nets	2
WS09.02	Integration	5
Activity	1	5
Activity	2	6
Activity	3	7
Activity	4	8
Activity	5	9
Activity	6	18
WS09.03	GeoGebra	19
Activity	1: Introduction to GeoGebra	19
Activity	2: Graphing Multiple Functions	20
Activity	3: To change the appearance of a graph of a function	20
Activity	4: To draw a function with a given domain and use the Intersect Two Objects tool	21
Activity	5: To Transfer a diagram made in GeoGebra to Word or PowerPoint	22
Activity	6: An Alternative to using the Snipping Tool in GeoGebra (Gives better picture quality.)	23
Activity	7: Function Inspector Tool	24
Activity	8: To draw graph of the Integral of a function	26
Activity	9: Using the Input Bar to find the Integral of a function in an interval	27
Activity	10: To find the area between two curves	27
Activity	11: Using the two Graphics Views	28
Activity	12: To fit a graph to a list of points that are shown on the Spreadsheet view	29

WS09.01 Nets

Q1. Match the net of the prism or pyramid with its 3D shape

Which of the following are nets of a cube?

Q3. List the nets that are the same:

Q4. Find the mapping which can be folded to make the cube:

WS09.02 Integration

Activity 1

For each function, write in its correct derivative.

5 <i>x</i>	
5 <i>x</i> + 2	
5x - 10	
$x^2 + \pi$	
x ²	
sin(x)	
sin(<i>x</i>) – 1.3	
sin(<i>x</i>) + 9	
$\frac{1}{2}x^2$	
$\frac{1}{2}x^2 - 0.358$	

Activity 2

Find the anti-derivative of the function f(x) = 3 which passes through the point (1, 5).

Q1. How is this question different to all the previous anti-derivative questions you have encountered?

Q2. Find the indefinite form of the anti-derivative of f(x) = 3.

Q3. Represent the indefinite form of the anti-derivative graphically below by sketching the antiderivatives for each of the following values of $C = \{-3, -2, -1, 0, 1, 2, 3\}$.

					Y				
				9-					
				0					
				0					
				7-					
				6					
				F					
				5					
				4-					
				3-					
				2					
				1-					
				0					Χ,
-	4 -	-3 -	2 -	1	0	1 :	2 :	3 4	4
				-1-					
				-2-					
				3					
				-5					
				-4-					
				-5-					

Q4. Identify the distinct anti-derivative you were asked to find.

Explain what happens to the width of the rectangles (Δx) as the number of rectangles (n) increases. Express this relationship using mathematical notation.

Description in words: As the number of rectangles increases, the width of the rectangles

As
$$n \rightarrow$$
_____, $\Delta x \rightarrow$ _____

Activity 4

Calculate $\int_2^5 (2x+1)dx$.

Q1. In words describe what you are being asked to do.

Q2. Using a suitable approach, complete the task.

Group A

Figure 1 shows the UCD Student Computer Centre.

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

<i>x</i>	Width	Height	Area	Pattern
0	0	5	0	A = 5(0)
1	1	5	5	A = 5(1)
2				A =
3				<i>A</i> =
4				A =
5				<i>A</i> =
6				<i>A</i> =
:	:	:	:	:
X			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.

- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - (b) <u>Use the area function</u> to calculate the given area.
 - (c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x = 0$ up to $x = 2$.	7 6 8 9 1 0 1 2 3 4 5 6 7 X	
Explanation:		
From $x = 0$ up to $x = 5$.	7 6 8 8 8 8 8 8 8 9 9 1 1 1 2 3 4 5 6 7 8 7 8 7 8 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
Explanation:		
From $x = 2$ up to $x = 5$.	7 6 8 8 9 1 9 1 2 1 0 1 2 3 4 5 6 7	
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
h(x) =	A(x) =

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Group B Figure 2 shows The Vu Bar in Dubai.

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

x	Width	Height	Area	Pattern
0	0	0	0	$A = \frac{1}{2}(0)(0)$
1	1	1	0.5	$A = \frac{1}{2}(1)(1)$
2				A =
3				A =
4				A =
5				<i>A</i> =
6				A =
7				
8				
:	:	:	:	:
X			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.

- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - (b) <u>Use the area function</u> to calculate the given area.
 - (c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x = 0$ up to $x = 3$.	8 7 6 5 4 9 6 5 4 9 6 5 4 9 7 6 5 4 9 7 6 5 4 9 7 6 7 6 5 4 9 7 6 9 10 7 8 9 10 10 7 8 9 10 7 8 9 10 10 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
Explanation:		
From $x = 0$ up to $x = 5.5$.	8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10	
Explanation:		
From $x = 3$ up to $x = 5.5$.	8 7 6 5 4 9 6 5 4 9 7 6 5 4 9 7 6 5 4 9 7 6 5 4 9 7 6 5 4 9 7 6 5 4 9 10 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
h(x) =	A(x) =

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Group C Figure 3 shows a modern timber dwelling.

Figure 3 – Timber Dwelling.

Q4. Complete the table below using an approach similar to that used in Q2 and Q3.

x	Width	Height	Area	Pattern
3	0	9	0	A = (9)(0)
4	1	9	9	A = (9)(1)
5				<i>A</i> =
6				A =
7				<i>A</i> =
8				<i>A</i> =
9				<i>A</i> =
10				
11				
12				
:	:	:	:	:
X			A(x) =	

Q5. Sketch the graph of the area function on the empty axes.

- **Q6.** For each of the areas in the table below:
 - (a) Shade in the given area on the diagram.
 - (b) <u>Use the area function</u> to calculate the given area.
 - (c) Explain how the area function is used to calculate area.

Section of Building	Diagram	Area Calculation
From $x = 3$ up to $x = 11$.	10 Y Bounding Function B B B B B B B B B B B B B B B B B B B	
Explanation:		
From $x = 3$ up to $x = 6$.	10 ¹ Y Bounding Function B C B C B C B C C C C C C C C C C C C C	
Explanation:		
From $x = 6$ up to $x = 11$.	10 Y Bounding Function B C C C C C C C C C C C C C C C C C C	
Explanation:		

Q7. (a) In the space below write in the bounding function (from Q1 above) and the area function (from Q3 above).

Bounding Function	Area Function
h(x) =	A(x) =

(b) If you were presented only with the bounding function, is there a way in which you could determine the area function? Explain.

Activity 6			
Question 1			Question 2
Bernie has a sa lodge to or with the activity in t	vings account whicl ndraw money. The he account over a 7	h she can use to table below shows month period:	On a certain day in Cork, air temperature was described by the following function: $T(t) = 0.2t^2 + (.4t25.2)$, where $0.4t + .1(.4t)$
Time	Savings(€)		$T(t) = -0.2t^2 + 6.4t - 35.2$ where $9 \le t \le 16$, where <i>T</i> is temperature in °C and <i>t</i> is time since
April	8000		midnight in hours.
Мау	18000		
June	16000		
July	16000		
August	16000		
September	12000		
October	12000		
(s) 18000 sb 16000 14000 10000 0000 4000 2000 3 4 Index	2 c kem	9 10 11 Time	$T(t) = -0.2t^2 + 6.4t - 35.2$

WS09.03 GeoGebra

Activity 1: Introduction to GeoGebra

To download GeoGebra go to www.geogebra.org.

On opening GeoGebra the following window will appear.

Note: If the **Spreadsheet** is not visible go to **View** and choose **Spreadsheet** and if the **Graphics** is not visible go to **View** and choose **Graphics**.

Note: When you click on Graphics in the View Menu the following toolbar appears:

		Move Drag or select objects (Esc)
and when you click on Spreadshe	et in the View Menu the following to	olbar appears:
	love)rag or select objects (Esc)	
In addition, when in the Spreads Bar . This enables you to change t	1eet view , if one clicks on the right arm he layout of the Spreadsheet .	row you get the Toggle Style
	Spreadshoot	_
		r

<u>Note</u>: When drawing a function use f(x) = rather than y =, because when y = is used some of the commands from the Input Bar do not work.

Activity 2: Graphing Multiple Functions

Input the following Input Bar Commands in the Input Bar and press Return on the keyboard.

Function	Example	GeoGebra Input Bar Command	
Linear	f(x) = 4x - 3	f(x) = 4x - 3	
Quadratic	$g(x) = x^2 - x - 6$	$g(x) = x^2 - x - 6$	
Cubic	$h(x) = x^3 - 4x^2 + 8x - 12$	$h(x) = x^{3} - 4x^{2} + 8x - 12$	
Exponential	$p(x) = 3^x$	$p(x) = 3^{x}$	

Activity 3: To change the appearance of a graph of a function

1. Click on the graph of the function, right click and choose **Object Properties**. A new **Dialogue Box** appears.

Preferences	the second se	×
• 📰 🔺 🖬	10 No.	9
Function	Basic Colour Style Algebra Advanced Scripting Name: f Definition: x* Caption: Show Object Show Label: Name * Show Trace Fix Object Audilary Object	

2. With the **Colour tab** open change the colour.

Basic	Color	Style	Algebra	Advanc	ed Scripting
					lecent: lecent:
Previev	N:		Bla	ck 0, 0, 0	

3. With the **Style tab** open use the **drop down menu** to change the style. and adjust the **Line Thickness** to the required width.

Basic Color	Style	Algebra	Advanced	Scripting
Line Thickne	ess			
-0				
1 3	5 7	9	11 13	
Line Style:			-	

4. With the **Basic tab** open, click the **Show Label button** and choose **Name and Value** from the **drop down menu** to enable both the name of the graph of the function and its equation to be shown.

(Basic Color Style Algebra Advanced Scripting
	Name: f
	Definition: x ^a
	Caption:
	Show Object
\langle	Show Label: Name
	Show Trace
	Fix Object
	Auxiliary Object

5. Click at the top of the **Dialogue Box**.

Activity 4: To draw a function with a given domain and use the Intersect Two Objects tool

For Example Question 6 (b) Junior Certificate Ordinary Level Paper 1 2013

Draw the graph of the function $f: x \to 2x^2 - 2x - 5$ in the domain $-2 \le x \le 3$, where $x \in \mathbb{R}$.

- 1. Go to File and choose New Window.
- 2. In the Input Bar type **Function**[2x^2-2x-5,-2,3].

<u>Note</u>: If you are using the automatic **Function command** as in the diagram below, press the **Tab button** on your keyboard to move from Function to **Start x-Value** etc.

```
Input: Function[ <Function>, <Start x-Value>, <End x-Value> ]
```

- 3. **Press Enter** on the keyboard.
- **4.** As your function will be **automatically** called f(x), to rename it, right click on the graph of the function and choose **Rename**.

5. Replace *f* with *g* in the **Dialogue Box** that appears and press **OK**.

🗇 Rename	×
New name for Function f	
g	α
	OK Cancel

<u>Note</u>: To see the relevant area of this graph, select the Move Graphics tool 4, click the y axis and drag towards the origin.

Question 6 (c) (i) Junior Certificate Ordinary Level Paper 1 2013

Use the graph drawn in 6(b) to estimate: The values of $2x^2 - 2x - 5$ when x = 0.5.

- **1.** In the Input Bar type x = 0.5 and press **Enter**.
- **2.** Select the **Intersect Two Objects** tool (in the second **drop-down menu** from the **left** on the **Graphics toolbar**) and click on the graph of the function *g* and the line x = 0.5.
- **3.** The co-ordinates of the point of intersection appear in the **Algebra View**.

Question 6 (c) (ii) Junior Certificate Ordinary Level Paper 1 2013

Use the graph drawn in 6(b) to estimate: The values of x for which g(x) = 0.

- **1.** Select the **Intersect Two Objects** tool and click on the graph of the function *g* and the *x* axis.
- **2.** The co-ordinates of the points of intersection appear in the **Algebra View**.

<u>Alternatively</u>: Type Root[g] in the Input Bar and press return

Activity 5: To Transfer a diagram made in GeoGebra to Word or PowerPoint

- 1. Draw a function (or whatever diagram is required) in **GeoGebra**.
- **2.** Click on the **Start button at the bottom left hand side of your computer's screen.**

- 3. Go to All Programs, Accessories and Snipping Tool.
- 4. A new Dialogue Box appears.

Snipping Tool				
🥵 №ew 👻 🖄 Cancel 🚳 Options				
Select a snip type from the menu 🛛 🕡 or click the New button.				

5. Click New and outline the area you want in your picture.

- 6. Open Word or PowerPoint and click Paste or click Control and v simultaneously on your keyboard.
- 7. To resize this picture, click on the picture and drag the dots on the corners of the pictures in or out as required.
- **8.** This picture can be centred by clicking or press Control and e simultaneously on your keyboard.
- 9. To wrap the picture in text, right click the picture, choose **Wrap Text** and follow the arrow to the right to choose the different layouts.
- **10.** Other changes can be made to this picture by right clicking the picture and choosing **Object Properties**.

Note: To pin the Snipping Tool to the Task Bar, go to All Programs, Accessories and Snipping Tool, right click on Snipping Tool and choose Pin to Taskbar.

Ctrl+P Graphics View as Picture (png, eps) ...

Alt+F4 Graphics View to Clipboard

Graphics View as Animated GIF ...

Graphics View as PSTricks ...

Graphics View as PGF/TikZ ... Graphics View as Asymptote

Graphics

File Edit View Options Tools Window Help

Ctrl+N

Ctrl+O

Ctrl+S

1. Go to File, Export and choose Graphics View as Picture.

💮 GeoGebra (2)

New Window

🕒 Open Webpage ... Open Recent

Save As ... Share..

Export

Close

Print Preview

Close All

New 🕒 Open ...

🖹 Save

2. Complete the new Dialogue Box and click Clipboard.

Export as Picture
Format Portable Network Graphics (png)
Scale in cm: 1 : 1
Resolution in dpi: 300 🔻 📝 Transparent
Size: 17 cm × 11.74 cm, 2007 × 1386 pixels ²
Save Clipboard Cancel

3. Open Word or PowerPoint, paste and adjust like any other picture.

• ABC

Dynamic Worksheet as Webpage (html) ... Ctrl+Shift+W

ᠿ

Ctrl+Shift+P

Ctrl+Shift+C

Ctrl+Shift+T

Activity 7: Function Inspector Tool

- **1.** Draw your function in the usual way. For example in the Input Bar type $f(x) = x^2-x-6$.
- Click on the Function Inspector Tool in the third Drop-Down Menu from the right on the Graphics Toolbar.

3. Click on the graph of the function to activate **Function Inspector** and a new dialogue box appears.

② Function Inspector	×
$f(x) = x^2 - x - 6$	3
Interval Points	
Property	Value
Min	(0.5 , -6.25)
Max	(-1,-4)
Root	No Roots
Integral	-11.3333
Area	11.3333
Mean	-5.6667
Length	3.4002
1 <u>≤</u>	x ≤ 1

4. With the **Interval tab open** select the interval you want **to examine** for example, by typing –1 to 2in the active window at the bottom of the tab. After each change for example you change the '1' in the right-hand window to 2 *you must press the Enter button on your keyboard after each change for it to take effect.*

- 5. Click and drag the red dot(s) and watch how the area, the integral and the other values in the **Interval tab**. change.
- **<u>Note</u>**: The Mean is the Average Value of the function.
- **Note:** The Min. and Max. values given are the minimum and maximum values in the range being investigated.

Explorations:

Why does it say this function has no roots?

Set the **interval** from -2 to 5. Why is the area now different from the integral?

Activity 8: To draw graph of the Integral of a function

- **1.** Draw the graph of the function for example **f(x)=x^2**.
- 2. In the Input Bar type Integral[f].

<u>Note</u>: This method takes the *Constant of Integration* to be *zero*.

Activity 9: Using the Input Bar to find the Integral of a function in an interval

- **1.** Draw the graph of the function for example $f(x) = x^2 x 6$
- 2. In the Input Bar type Integral[f,-2,3] and press Enter.(*Notice the negative answer.*)

Now in the Input Bar type **Integral[f,-2,4]**, what do you notice about the value of the Integral? Explain why this happened.

LCHL 2011: Q7 (b).

The curve $y = 12x^3 - 48x^2 + 36x$ crosses the x-axis at x = 0, x = 1 and x = 3, as shown.

Calculate the total area of the shaded regions enclosed by the curve and the *x*-axis.

- **1.** Draw the graph of the function for example $(x) = x^2$.
- **2.** Draw the graph of the function g(x) = x + 3.
- **3.** Use the **Intersect Two Objects** tool to find the points of intersection between the two functions. The co-ordinates of points A and B appear in the Algebra view.

y

4. In the Input Bar type **Integral**[*f*,*x*(*A*),*x*(*B*)]. This is represented by the value *a* in the **Algebra View**.

2

- 5. In the Input bar type Integral[*g*,*x*(*A*),*x*(*B*)]. This is represented by the value *b* in the Algebra View.
- **6.** In the Input Bar type c = b a. *c* is the area between the curves.

<u>Note</u>: Steps 4-6 can be replaced by:

In the Input Bar type **IntegralBetween**[*g*,*f*,*x*(*A*),*x*(*B*)].

Activity 11: Using the two Graphics Views

Use the two Graphics views to find the Area under a curve by (*i*) the Integral method and (*ii*) the Trapezoidal Rule.

- 1. Go to File and choose New Window.
- 2. Draw the graph of your function in the usual way. For example in the **Input Bar** type **f**(**x**) = **x^2**.
- **3.** Go to **View** and select **Graphics 2**. If the two Graphics views are not aligned right click on the **Graphics View** and choose **Standard View**.
- **4.** Select the graph of your function, right click and choose **Object Properties**.
- 5. With the **Advanced tab** open, click **Graphics 2**.

້ 📜 🔺 🔺		
Function f f	Basic Colour Style Algebra Advanced Scripting	
	Dynamic Colours Red: Green: Blue:	
	RGB Layer. 0	x
	Tooltip: Automatic Selection Allowed Location	

- **6.** Click at the top of the **Dialogue box**.
- **7. Click** on the **Graphics 1 View** and find the integral of the function between 0 and 2 as in the Activity 9 above.
- 8. Click on the Graphics 2 View.
- 9. Select the Slider tool
 . Click on the Graphics 2 View and create a slider called n with Min: =1, Max: =50 and Increment: = 1. Click Apply.

Slider	X
Number Angle	Name n
Integer Interval Slide	Random r Animation
Min: 1	Max: 50 Increment: 1
	Apply Cancel

10. In the **Input Bar** type **b= TrapeziumSum[f,0,2,n]**.

TrapezoidalSum<mark>(<F</mark>t

<u>Note</u>: **TrapeziumSum** is replaced by **TrapezoidalSum**, if the **GeoGebra Language** is set to **English(US)** instead of **English(UK)**. To change the **GeoGebra Language** go to **Options**, **Language** and follow the arrows.

11. Move the **slider n** and as **n** gets larger check the relationship between the integral and trapezium area.

Note: The value for the **Trapezium sum** should eventually have the same value as the integral value when n increases.

<u>Note</u>: To get more accurate area values go to **Options**, **Rounding** and **choose** for example **10 Decimal places**.

Can you suggest other uses for the two Graphics Views?

Activity 12: To fit a graph to a list of points that are shown on the Spreadsheet view

- 1. Go to view and choose **Spreadsheet**.
- 2. Insert the *x* co-ordinates of the points in **Column A** and the *y* co-ordinates in the **column B**.

Spreadsheet										
	А	В								
1	-3	10								
2	-2	5								
3	-1	2								
4	0	1								
5	1	2								
6	2	5								
7	3	10								

- 3. Highlight the two columns of data in the **Spreadsheet**, right click, choose **Create** and **List of points**.
- 4. In the **Input Bar** type **Fitpoly[list1,2]**, if the list is list1 and you require a curve of degree 2 for example.

<u>Note:</u> If you require an exponential curve, input the co-ordinates of the points in the **Spreadsheet view** and create a list as above and then type **FitExp[list1]** in the **Input Bar**, if the list is list1.

2012: LCHL Sample Paper 1 Phase 3

(b) A sprinter's velocity over the course of a particular 100 metre race is approximated by the following model, where v is the velocity in metres per second, and t is the time in seconds from the starting signal:

$$v(t) = \begin{cases} 0, & \text{for } 0 \le t < 0.2 \\ -0.5t^2 + 5t - 0.98, & \text{for } 0.2 \le t < 5 \\ 11.52, & \text{for } t \ge 5 \end{cases}$$

Note that the function in part (a) is relevant to v(t) above.

CC BY 2.0

- (ii) Find the distance travelled by the sprinter in the first 5 seconds of the race.
- (iii) Find the sprinter's finishing time for the race. Give your answer correct to two decimal places.
 - 1. In the **Input bar** type **Function[0,0,0.2]**.
 - 2. In the **Input bar** type **Function[-0.5x^2+5x-0.98,0.2,5**].
 - 3. Create a **slider** called lastpartofrace with **Min**: 5, **Max**: 15 and **Increment**: 0.01.
 - 4. Adjust the **slider** so that it has a value of 15.
 - 5. In the Input bar type **Function**[11.52,5,lastpartofrace].
 - 6. In the Input bar type **Integral**[f,0,0.2].
 - 7. In the Input bar type **Integral[g,0.2,5]**.
 - 8. In the Input bar type **Integral[h,5,lastpartofrace]**.
 - 9. In the Input bar type **TotalDistance=a+b+c**
 - 10. Adjust the **slider lastpartofrace** until **TotalDistance** is approximately 100.

																		1						
								 										-						-
								 				 			 	 	_	-			 	_		_
																								٦
<u> </u>								 		 		 			 	 	_				 			_
								 										-						-
<u> </u>								 				 			 	 	_				 	_		_
<u> </u>								 										-						-
												 			 	 	_					_		_
<u> </u>								 				 			 	 	_				 	_		_
																						+	-	\neg
<u> </u>															_	_		-		$\left - \right $		_	+	-
																							-	
<u> </u>			 						 							 		-		$\left - \right $				\neg
																		<u> </u>	<u> </u>				\square	
-																	-							-
												 				 	_							_
<u> </u>								 		 								-						-
								 				 			 	 _		-	<u> </u>		 			_
								 				 			 	 	_				 			_
								 				 			 									-
																			-				\square	
																						\neg		
<u> </u>													-+					-	-			-+		\neg
				<u> </u>	<u> </u>							 			 		_							\square
																						T	T	1
<u> </u>					<u> </u>	<u> </u>			 				\rightarrow				+	-	-			+		\neg
				<u> </u>	<u> </u>										_	 _	_	-					-+	-
																						T		
																						+	-	\neg
					<u> </u>										 		_	-						_
]			ſ	[
																						+	-	
<u> </u>				<u> </u>	<u> </u>										_	 _	_	-	-	$\left - \right $			-+	\neg
																						+	\square	
<u> </u>			 													 _		-		$\left - \right $			+	_
<u> </u>			 						 									-	-	$\left - \right $		-+	+	\neg
<u> </u>																	_							
																		1						