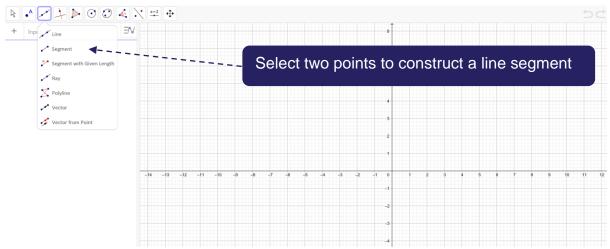
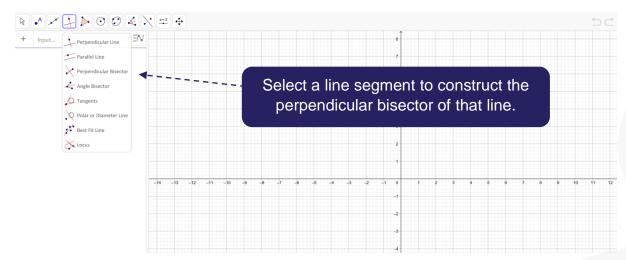


GeoGebra: Effective use of GeoGebra in the classroom

Rich Task 1- Problem

A Scout Troop have pitched 3 tents to sleep in and wish to build one fire to cook with. Where is the fairest location for the fire?




Rich Task 1- Cheat Sheet

Point drop-down menu 8 + A Point ΞN Point on Object Select objects to establish 🖍 Attach / Detach Point their point of intersection. Mintersect Midpoint or Center Complex Number € Extremum Roots Select a circle to find the centre. Select a line segment to find the midpoint.

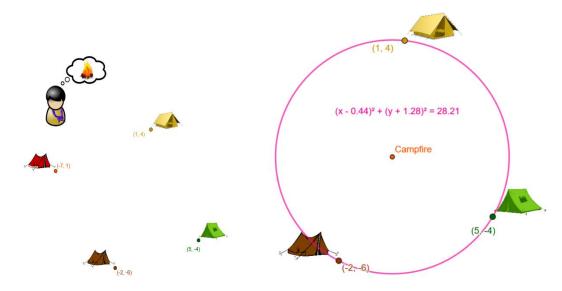
Types of lines drop-down menu

Interacting lines drop-down menu

Rich Task 1- Questioning

Bloom's Taxonomy

L1: How do you plot a point? (Requires students remember how to use GeoGebra to plot points)


L2: Can you find the fairest point between 2 of the tents? (Understanding of midpoint)

L3: How can I find the fairest point between 3 tents? (Must **apply** understanding of bisecting lines to find the circumcentre)

L4: What is the relationship between the synthetic and coordinate geometry in this task? (**Analyse** the connection between algebra and geometry)

L5: Would this solution work if there were more than 3 tents? (**Evaluate** the solution to the problem and if it applies to multiple contexts)

L6: Could you create a similar problem? (creating new problem)

Prompts for Extension Questions

Rich Task 2 – Option 1

Task to investigate effect of *a*, *b* and *c* in the function of g(x) = a + b * sin(c * x)

- 1. Use GeoGebra to graph the function f(x) = sin(x)
- 2. Using sliders to control the values of *a*, *b* and *c*, graph the function of g(x) = a + b * sin(c * x)
- 3. Write down the equation of as many functions as you can that have a maximum value of 3 and a minimum value of -3.

4. Write down the equation of as many functions as you can that have a maximum value of 3 and a minimum value of 1.

5. Write down the equation of as many functions as you can that intersect with roots of f(x) = sin(x)

- Two points to bear in mind while you're doing this activity
 - How could this activity be used with other types of functions?
 - What do the sliders in this activity represent mathematically?

Rich Task 2 – Option 2

Task to investigate effect of *a*, *b* and *c* in the function of

$$h(x) = a * (x + b)^2 + c$$

1. Use GeoGebra to graph the function

$$h(x) = a * (x+b)^2 + c$$

- 2. Using sliders to control the value of a, b and c, graph $h(x) = a * (x + b)^2 + c$
- 3. Write down the equation of as many functions as you can that have a minimum y-value of -1.

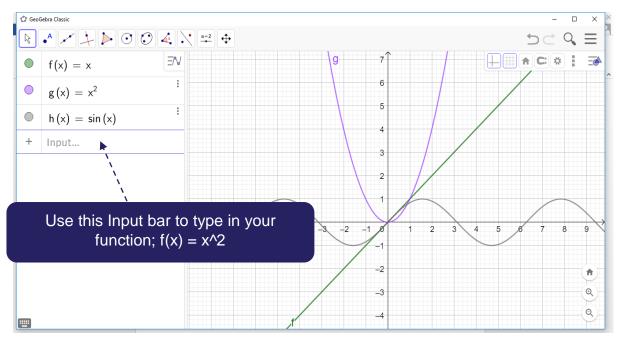
Solutions:

4. Write down the equation of as many functions as you can that have a turning point at the origin.

So	lutions:			

5. Write down the equation of as many functions as you can that have roots of 2 and 6.

Solutions:			

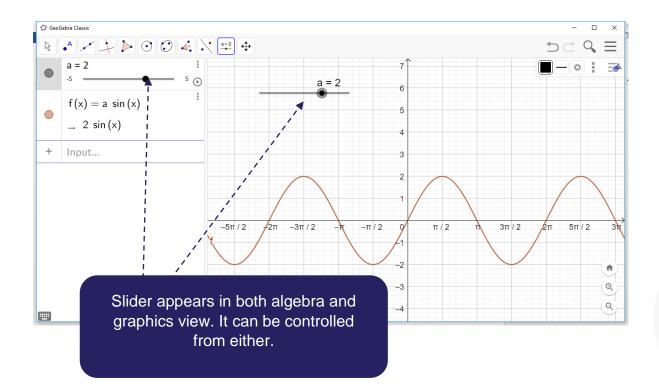

- Two points to bear in mind while you're doing this activity
 - $_{\circ}$ $\,$ How could this activity be used with other types of functions?
 - What do the sliders in this activity represent mathematically?

Extension Questions:

- 1. Write down the equation of as many functions as you can that have no roots.
- 2. What changes would you make to the function to make it invertible?

Rich Task 2 – Cheat Sheet

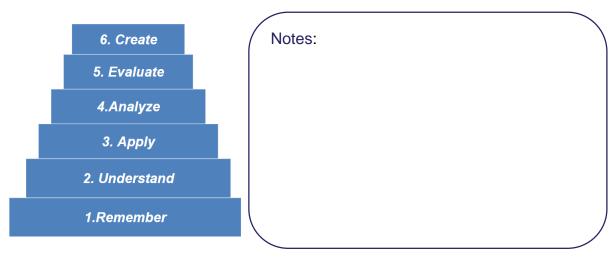
Creating graphs of different functions


Creating graphs of Trigonometric functions in radians

GeoGebra Classic			– 🗆 ×	<
$\mathbb{R} \bullet^{\mathbb{A}} \not \to \mathbb{P} \odot$			⇒⊂ ♀ ≡	:
+ Input		4	e	× ✿ ৵
Put x-axis in terms of Right click on axis. (x-axis tab. Change t	Click settings. (Click 1 Unit: 1 Cross at: 0 $1/2$ $-\pi$ Selection Allower		
		• ² Q. 3 Q. 4		

Using Sliders

GeoGebra Classic GeoGebra Classic Input	Click the slider icon. C for the slider. Choose and min va	your name, max	
	Slider Name		
	a = 1 Numer O Angle O Integer		
	Interval Silder Apimation Min: Max: Increment:		
-5π		π/2 π 3π/2 2	π 5π/2 3π
	OK <u>Cancel</u>		(1)
	-3		
	-4		<u>e</u>

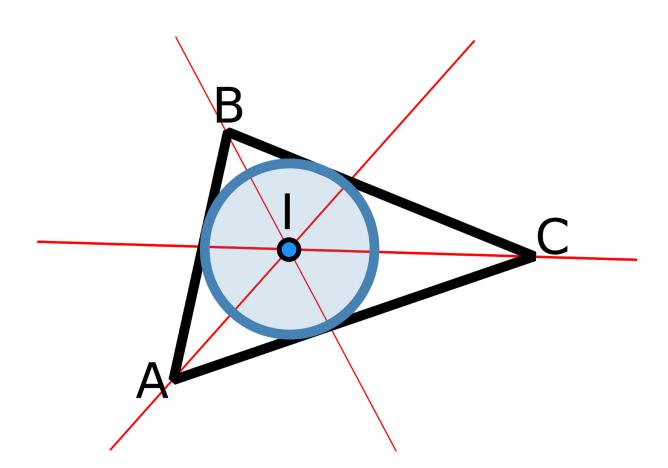

Effective Questioning

Research conducted by Cotton (2001) and Hattie (2012) showed that:

20% of classroom questions are higher cognitive questions 20% are procedural questions ('have you got your books with you?) 60% are lower cognitive questions.

Elements of Effective Questioning:

- Questions must have a purpose
- Questions must be linked to learning outcomes and success criteria
- It promotes discussions
- Results in students being more likely to develop a deeper understanding of an idea because they have tried to explain it themselves
- Promotes higher order thinking and extends learning.


Bloom's Taxonomy

Some of your higher order questions:

Task 3 – Take-home Task

Use GeoGebra to investigate why the point of intersection of the angular bisectors of a triangle is equidistant to the sides of the triangle.

Useful links

Online GeoGebra application	http://www.geogebra.org
GeoGebra support manual	https://wiki.geogebra.org/en/Manual
GeoGebra videos from PDST PP Maths	https://tinyurl.com/PMGeoGebra
School support resources	www.scoilnet.ie
Effective use of task 2 without devices	https://tinyurl.com/PostPrimary3 (task2)
Effective use of GeoGebra	https://tinyurl.com/PostPrimary4 (tandl)
Leaving Certificate Maths Syllabus	https://tinyurl.com/LCSyllabus
Junior Certificate Maths Syllabus	https://tinyurl.com/JCsyllabus
Task 3 Discussion pad	https://tinyurl.com/PostPrimary2 (task3)
Workshop evaluation form	https://tinyurl.com/Geoevaluate
Geometry workshop questionnaire	https://tinyurl.com/GeomTrigWS

