

GeoGebra:

Effective use of GeoGebra in the classroom

Workshop 1 Booklet

Name:

Rich Task 1- Problem

A Scout Troop have pitched 3 tents to sleep in and wish to build one fire to cook with. Where is the fairest location for the fire?

Rich Task 1- Cheat Sheet

Point drop-down menu

Types of lines drop-down menu

Interacting lines drop-down menu

Rich Task 1- Questioning

Bloom's Taxonomy

L1: How do you plot a point? (Requires students remember how to use GeoGebra to plot points)
L2: Can you find the fairest point between 2 of the tents? (Understanding of midpoint)
L3: How can I find the fairest point between 3 tents? (Must apply understanding of bisecting lines to find the circumcentre)

L4: What is the relationship between the synthetic and coordinate geometry in this task? (Analyse the connection between algebra and geometry)

L5: Would this solution work if there were more than 3 tents? (Evaluate the solution to the problem and if it applies to multiple contexts)

L6: Could you create a similar problem? (creating new problem)

Prompts for Extension Questions

Triangles	Acute	Right Angled	Obtuse
Is the triangle always?			
Is the circumcentre always inside the triangle?			

Rich Task 2 - Option 1

Task to investigate effect of a, b and c in the function of

$$
g(x)=a+b * \sin (c * x)
$$

1. Use GeoGebra to graph the function $f(x)=\sin (x)$
2. Using sliders to control the values of a, b and c, graph the function of

$$
g(x)=a+b * \sin (c * x)
$$

3. Write down the equation of as many functions as you can that have a maximum value of 3 and a minimum value of -3 .
\square
4. Write down the equation of as many functions as you can that have a maximum value of 3 and a minimum value of 1 .
5. Write down the equation of as many functions as you can that intersect with roots of $f(x)=\sin (x)$
\square

- Two points to bear in mind while you're doing this activity
- How could this activity be used with other types of functions?
- What do the sliders in this activity represent mathematically?

Rich Task 2 - Option 2

Task to investigate effect of a, b and c in the function of

$$
h(x)=a *(x+b)^{2}+c
$$

1. Use GeoGebra to graph the function

$$
h(x)=a *(x+b)^{2}+c
$$

2. Using sliders to control the value of a, b and c, graph

$$
h(x)=a *(x+b)^{2}+c
$$

3. Write down the equation of as many functions as you can that have a minimum y-value of -1 .

Solutions:

4. Write down the equation of as many functions as you can that have a turning point at the origin.

Solutions:

5. Write down the equation of as many functions as you can that have roots of 2 and 6.

Solutions:

- Two points to bear in mind while you're doing this activity
- How could this activity be used with other types of functions?
- What do the sliders in this activity represent mathematically?

Extension Questions:

1. Write down the equation of as many functions as you can that have no roots.
2. What changes would you make to the function to make it invertible?

Rich Task 2 - Cheat Sheet

Creating graphs of different functions

Creating graphs of Trigonometric functions in radians

Effective Questioning

Research conducted by Cotton (2001) and Hattie (2012) showed that:
20% of classroom questions are higher cognitive questions 20% are procedural questions ('have you got your books with you?) 60% are lower cognitive questions.

Elements of Effective Questioning:

- Questions must have a purpose
- Questions must be linked to learning outcomes and success criteria
- It promotes discussions
- Results in students being more likely to develop a deeper understanding of an idea because they have tried to explain it themselves
- Promotes higher order thinking and extends learning.

Bloom's Taxonomy

Some of your higher order questions:

Task 3 - Take-home Task

Use GeoGebra to investigate why the point of intersection of the angular bisectors of a triangle is equidistant to the sides of the triangle.

Useful links

Online GeoGebra application	$\underline{\text { http://www.geogebra.org }}$
GeoGebra support manual	$\underline{\text { https://wiki.geogebra.org/en/Manual }}$
GeoGebra videos from PDST PP Maths	$\underline{\text { https://tinyurl.com/PMGeoGebra }}$
School support resources	$\underline{\text { www.scoilnet.ie }}$
Effective use of task 2 without devices	$\underline{\text { https://tinyurl.com/PostPrimary3 (task2) }}$
Effective use of GeoGebra	$\underline{\text { https://tinyurl.com/PostPrimary4 (tandl) }}$
Leaving Certificate Maths Syllabus	$\underline{\text { https://tinyurl.com/LCSyllabus }}$
Junior Certificate Maths Syllabus	$\underline{\text { https://tinyurl.com/JCsyllabus }}$
Task 3 Discussion pad	$\underline{\text { https://tinyurl.com/PostPrimary2 }}$ (task3)
Workshop evaluation form	$\underline{\text { https://tinyurl.com/Geoevaluate }}$
Geometry workshop questionnaire	$\underline{h t t p s: / / t i n y u r l . c o m / G e o m T r i g W S ~}$

